Biorational management of maize fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) using Bacillus thuringiensis (Berliner) enriched with chemical additives
Article Main
Abstract
An invasive pest, fall armyworm, Spodoptera frugiperda (J.E.Smith) (Lepidoptera: Noctuidae) attacks maize at every stage of development, from seedling emergence up to cob formation. Early instar larvae were seen mostly on leaves of maize with characteristics pin or shot hole symptoms. Later instar larvae were confined to deep whorls, leaving typically ragged like appearance and fed on the reproductive stage of the crop especially tassels and developing cobs resulting in quality and quantity loss of maize produce. The effect of commercially available Bacillus thuringiensis subsp. kurstaki product, Dipel® against the second instar larvae of Fall Armyworm (FAW )was not promising under laboratory conditions. Hence, an effort was made to add an adjuvant along with B. thuringiensis to increase the virulence of commercially available B. thuringiensis.The Laboratory bioassays with B. thuringiensis and seven chemical additives ( T1- Bt + Boric acid, T2- Bt + Zinc oxide, T3- Bt + Sodium nitrate, T4- Bt + Peptone, T5- Bt + Urea, T6- Bt + EDTA, T7- Bt + Citric acid & T8- Bt alone T9- Control) were tested against second instar larvae of Spodoptera frugiperda larvae. The results showed that B. thuringiensis plus sodium nitrate (T3) promoted maximum mortality 82.2 per cent with a minimum LC50 value of 54.620 mg/l. Sodium nitrate boosted B. thuringiensis activity at a concentration of 0.05 per cent by 2.128-fold than B. thuringiensis alone. Overall, sodium nitrate improved the efficacy of B. thuringiensis spray at the maximum level followed by boric acid, urea, EDTA and peptone.
Article Details
Article Details
Spodoptera frugiperda, B. thuringiensis, Chemical additives, Synergistic interaction
Baum JA, Johnson TB, Carlton BC. (1999). Bacillus thuringiensis : Natural and recombinant bioinsecticide products. In: Menn JJ, Hall FR (eds) Biopesticides: use and delivery. Humana Press, Totowa, NJ, pp 189–210. 10.1385/0-89603-515-8:189
Finney, D.J. (1971). Probit analysis 3rd edition. Cambridge University, London, UK, 333.
Goergen, G., Kumar, P.L., Sankung, S.B., Togola. A., Tamo, M. (2016). First report of outbreaks of the Fall Armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a New Alien Invasive Pest in West and Central Africa. PLoS ONE 11(10): e0165632. doi.org/10.1371/journal.pone.0165632
Govindarajan, R., Jayaraj, S. & Narayanan, K. (1976). Mortality of the tobacco caterpillar, Spodoptera litura (F.), when treated with Bacillus thuringiensis combinations with boric acid and insecticides. Phytoparasitica, 4(3), pp.193-196.doi.org/10.1007/BF02981086
Luginbill, P. (1928). The fall armyworm. United States departament of agriculture, Washington, DC, USA. Te chnical Bulletin, 34
Malaikozhundan, B., Vaseeharan, B., Vijayakumar, S. & Thangaraj, M.P. (2017). Bacillus thuringiensis coated zinc oxide nanoparticle and its biopesticidal effects on the pulse beetle, Callosobruchus maculatus. Journal of Photochemistry and Photobiology B: Biology, 174, pp.306-314.doi.org/10.1016/j.jphotobiol.2017.08.014
Marzban, R., He, Q., Liu, X. & Zhang, Q. (2009). Effects of Bacillus thuringiensis toxin Cry1Ac and cytoplasmic polyhedrosis virus of Helicoverpa armigera (Hübner)(HaCPV) on cotton bollworm (Lepidoptera: Noctuidae). Journal of Invertebrate Pathology, 101(1), pp.71-76.doi.org/10.1016/j.jip.2009.02.008
Montezano, D.G., Sosa-Gómez, D.R., Specht, A., Roque-Specht, V.F., Sousa-Silva, J.C., Paula-Moraes, S.D., Peterson, J.A. & Hunt, T.E. (2018). Host plants of
Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology, 26(2), pp.286-300.doi.o rg/10.4001/003. 026.0286
Morris, O. N., Converse, V., & Kanagaratnam, P. (1995). Chemical additive effects on the efficacy of Bacillus thuringiensis Berliner subsp. kurstaki against Mamestra configurata (Lepidotera:Noctuidae). Journal of Economic Entomology, 88, 815–824.doi.org/10.1093/jee/88.4.815
Nagoshi, R.N., Goergen, G., Tounou, K.A., Agboka, K., Koffi, D. & Meagher, R.L. (2018). Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Scientific Reports, 8(1), pp.1-10.doi.org/10.1038/s41 598-018-21954-1
Nickerson, K. W. (1980). Structure and function of the Bacillus thuringiensis protein crystal. Biotechnology and Bioengineering, 22(7), 1305–1333. doi.org/10.1002/bit.2 60220704
Nickerson, K.W. (1980). Structure and function of the Bacillusthuringiensis protein crystal. Biotechnology and Bioengineering, 22(7), pp.1305-1333.doi.org/10.1002/bit.26 0220704
Opisa, S., Akutse, K.S., du Plessis, H., Fiaboe, K.K.M. & Ekesi, S. (2020). Chemical additives enhance the activity of a Bt‐based biopesticide targeting the beet webworm larvae. Journal of Applied Entomology, 144(1-2), pp.26-32. doi.org/10.1111/jen.12706
Salama, H.S., Foda, M.S. & Sharaby, A. (1985). Potential of some chemicals to increase the effectiveness of Bacillus thuringiensis Berliner against Spodoptera littoralis (Boisd.). Zeitschrift für Angewandte Entomologie, 100(1-5), pp.425-433.doi.org/10.1111/j.1439-0418.1985.tb0280 1.x
Salama, H.S., Foda, M.S. & Sharaby, A. (1989). Potentiation of Bacillusthuringiensis endotoxin against the greasy cutworm Agrotis ipsilon. Journal of Applied Entomology, 108(1-5),pp.372380.doi.org/10.1111/j.1439 041 8.198 9.tb 00470.x
Songa, J.M., Bergvinson, D. & Mugo, S. (2004). Mass rearing of the maize stem borers Chilo partellus, Busseola fusca, Sesamia calamistis, Chilo orichalcociliellus and Eldana saccharina at KARI, Katumani. Integrated Approaches to Higher Maize Productivity in the New Millennium: Proceedings of the Seventh Eastern and Southern Africa Regional Maize Conference, 5–11 February, 2002 (pp. 120-124).
Wigglesworth, V.(1977). The Principles of Insect Physiology. 7th ed. London, UK: English Language Book Society: Chapman and Hall.
Zhang, L.,Qiu, S., Huang, T., Huang, Z., Xu, L., Wu, C., Gelbič, I. & Guan, X. (2013). Effect of chemical additives on Bacillus thuringiensis (Bacillales: Bacillaceae) against Plutella xylostella (Lepidoptera: Pyralidae). Journal of Economic Entomology, 106(3), pp.1075-1080.doi.or g/10.1603/EC12288
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)