##plugins.themes.bootstrap3.article.main##

Dheeraj Pandey Harbans Kaur Kehri Ifra Zoomi Ovaid Akhtar Shweta Chaturvedi

Abstract

Present acceleration of Arsenic [As] exposure leads to severe health problems. Modern scientific approaches look towards potent bio-agents for the removal of such types of contaminations in sustainable ways. Microbes can potentially change the redox potential, solubility, pH by different complex reactions during bioremediation. There are many enzymes present in the microbial system which are involved in methylation such as As (V) reductase, monomethyl arsonic acid reductase, As (III) methyltransferase, and MMA (III) methyltransferase. On the other hand, microbes have As transformation ability and changed into different extractable forms with sulfide minerals such as arsenopyrite (FeAsS), enargite (Cu3AsS4) and realgar (As4S4). In some bacteria, the As-operon machinery thiol group bind with As, itdetoxifies its toxicity. Ars R gene and arsenic reductase enzyme (Ars C) play the key role in the reduction of As (V) to As (III) and detoxify by being transported outside of the cell by Ars AB As chemiosmotic efflux system. In fungi, As (V) is reduced to As (III) by the arsenate reductase and GSH glutathione converted into GSSH glutathione disulfide. In plants, As (III) conjugates with phytochelatin (PC) or GSH glutathione and accumulates in the vacuole or is converted into less toxic forms in the presence of arsenic reductase enzyme. This review focused on the potentiality and mechanisms of different microbes for As-detoxification in a sustainable manner.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Algae, Arsenic [As], AM fungi, Bacteria, Fungi, Hyperaccumulator, Protozoa

References
Abedin, M.J., Cotter-Howells, J. & Meharg, A.A. (2002a). Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant Soil, 240(2), 311-319.
Abedin, M.J., Cresser, M.S., Meharg, A.A., Feldmann, J. & Cotter-Howells, J. (2002b). Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ. Sci. Technol. 36(5), 962-968.
Acharyya, S.K. & Shah, B.A. (2007). Groundwater arsenic contamination affecting different geologic domains in India-a review: influence of geological setting, fluvial geomorphology and Quaternary stratigraphy. J. Environ. Sci. Health C, Part A, 42(12), 1795-1805.
Ahn, J.S. (2012). Geochemical occurrences of arsenic and fluoride in bedrock groundwater: a case study in Geumsan County, Korea. Environ. Geochem. Health. 34(1), 43-54.
Alam, M.Z., Hoque, M.A., Ahammed, G.J. & Carpenter-Boggs, L. (2020). Effects of arbuscular mycorrhizal fungi, biochar, selenium, silica gel, and sulfur on arsenic uptake and biomass growth in Pisum sativum L. Emerg. Contam. 6, 312-322.
Ali, W., Mushtaq, N., Javed, T., Zhang, H., Ali, K., Rasool, A. & Farooqi, A. (2019). Vertical mixing with return irrigation water the cause of arsenic enrichment in groundwater of district Larkana Sindh, Pakistan. Environ. Pollut. 245, 77-88.
Anguita, J.M., Rojas, C., Pastén, P.A. & Vargas, I.T. (2018). A new aerobic chemolithoautotrophic arsenic oxidizing microorganism isolated from a high Andean watershed. Biodegradation. 29(1), 59-69.
Anyanwu, C.U. & Ugwu, C.E. (2010). Incidence of arsenic resistant bacteria isolated from a sewage treatment plant. Int. Res. J. Basic Appl. Sci.,10, 64-78.
Bagade, A., Nandre, V., Paul, D., Patil, Y., Sharma, N., Giri, A. & Kodam, K. (2020). Characterisation of hyper tolerant Bacillus firmus L-148 for arsenic oxidation. Environ. Pollut., 261, 114124.
Barbafieri, M., Japenga, J., Romkens, P., Petruzzelli, G. & Pedron, F. (2013). Protocols for applying phytotechnologies in metal-contaminated soils. In: Plant-based remediation processes, Springer Berlin Heidelberg, 19-37.
Bates, M. N., Smith, A.H. & Hopenhayn-Rich, C. (1992). Arsenic ingestion and internal cancers: a review. Am. J. Epidemol., 135(5), 462-476.
Bayard, R., Chatain, V., Gachet, C., Troadec, A. & Gourdon, R. (2006). Mobilisation of arsenic from a mining soil in batch slurry experiments under bio-oxidative conditions. Water Res., 40(6), 1240-1248.
Bhargava, A., Carmona, F.F., Bhargava, M. & Srivastava, S. (2012). Approaches for enhanced phytoextraction of heavy metals. J. Environ. Manage., 105, 103-120.
Bhattacharya, P., Claesson, M., Bundschuh, J., Sracek, O., Fagerberg, J., Jacks, G. & Thir, J.M.(2006). Distribution and mobility of arsenic in the Rio Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Sci. Total Environ., 358(1-3), 97-120.
Bhattacharya, P., Welch, A.H., Stollenwerk, K.G., McLaughlin, M.J., Bundschuh, J. & Panaullah, G.(2007). Arsenic in the environment: biology and chemistry. Sci. Total Environ., 1, 379(2-3),109-20.
Bogo, A. & Mantle, P.G. (2000). Caffeine: also a fungal metabolite. Phytochemistry, 54(8), 937-939.
Bolan, N.S., Park, J.H., Robinson, B., Naidu, R. & Huh, K.Y. (2011). Phytostabilization: a green approach to contaminant containment. Adv. Aron. 112, pp145-204.
Borgono, J. M. & Greiber, R. (1971). Epidemiologic study of arsenic poisoning in the city of Antofagasta. Revista Medica de Chile, 99(9), 702-707.
Bravo, A., Brands, M., Wewer, V., Dörmann, P. & Harrison, M.J. (2017). Arbuscular mycorrhiza‐specific enzymes FatM and RAM 2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. New Phytol., 214(4), 1631-1645.
Brundrett, M.C. & Tedersoo, L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220(4), 1108–1115.
Bundschuh, M., Zubrod, J.P., Kosol, S., Maltby, L., Stang, C., Duester, L. & Schulz, R. (2011). Fungal composition on leaves explains pollutant-mediated indirect effects on amphipod feeding. Aqua. Toxicol., 104(1-2), pp.32-37.
Button, M., Koch, I., Watts, M.J. & Reimer, K.J. (2020). Arsenic speciation in the bracket fungus Fomitopsis betulina from contaminated and pristine sites. Environ Geochem Health.  42(9), pp.2723-2732.
Cantamessa, S., Massa, N., Gamalero, E. & Berta, G.(2020). Phytoremediation of a Highly Arsenic Polluted Site, Using Pteris vittata L. and Arbuscular Mycorrhizal Fungi. Plants, 9(9), p.1211.
Caporale, A.G., Sommella, A., Lorito, M., Lombardi, N., Azam, S. M., Pigna, M. & Ruocco, M. (2014). Trichoderma spp. alleviate phytotoxicity in lettuce plants (Lactuca sativa L.) irrigated with arsenic-contaminated water. J. Plant Physiol., 171(15), 1378-1384.
Casiot, C., Bruneel, O., Personné, J.C., Leblanc, M.& Elbaz-Poulichet, F. (2004). Arsenic oxidation and bioaccumulation by the acidophilic protozoan, Euglena mutabilis, in acid mine drainage (Carnoules, France). Sci. Total Environ. 320(2-3), 259-267.
Catarecha, P., Segura, M.D., Franco-Zorrilla, J.M., García-Ponce, B., Lanza, M., Solano, R. & Leyva, A. (2007). A mutant of the Arabidopsis phosphate transporter PHT1; 1 displays enhanced arsenic accumulation. The Plant Cell, 19(3), 1123-1133.
Cath, T.Y., Childress, A.E. & Elimelech, M. (2006). Forward osmosis: principles, applications, and recent developments. J. Memb. Sci. 281(1-2), 70-87.
Čerňanský, S., Kolenčík, M., Ševc, J., Urík, M.& Hiller, E.(2009). Fungal volatilization of trivalent and pentavalent arsenic under laboratory conditions. Biores. Technol. 100(2), 1037-1040.
Chandrajith, R., Diyabalanage, S. & Dissanayake, C.B. (2020). Geogenic fluoride and arsenic in groundwater of Sri Lanka and its implications to community health. Groundwater Sust. Develop. 10, 100359.
Chen, B., Xiao, X., Zhu, Y.G., Smith, F.A., Xie, Z.M. & Smith, S.E. (2007). The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa L. Sci. Total Environ. 379(2-3), 226-234.
Chen, G.Q., Zhu, J., Shi, X.G., Ni, J.H., Zhong, H.J., Si, G.Y., Jin, X.L., Tang, W., Li, X.S., Xong, S.M. & Shen, Z.X. (1996). In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with down-regulation of Bcl-2 expression and modulation of PML-RARα/PML proteins. Blood, 88(3), 1052-1061.
Chen, J., Qin, J., Zhu, Y.G., de Lorenzo, V. & Rosen, B.P. (2013). Engineering the soil bacterium Pseudomonas putida for arsenic methylation. Appl. Environ. Microbiol., 79(14), 4493-4495.
Chen, J., Sun, G.X., Wang, X.X., Lorenzo, V.D., Rosen, B.P. & Zhu, Y.G. (2014). Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM arsenic (III) S-adenosine methyltransferase gene. Environ. Sci. Techol.48(17), 10337-10344.
Chen, P., Li, J., Wang, H.Y., Zheng, R.L. & Sun, G.J. (2017). Evaluation of bioaugmentation and biostimulation on arsenic remediation in soil through biovolatilization. Environ. Sci. Pollu. Res., 24(27), 21739-21749.
Christophersen, H.M., Smith, F. A. & Smith, S.E. (2012). Unraveling the influence of arbuscular mycorrhizal colonization on arsenic tolerance in Medicago: Glomus mosseae is more effective than G. intraradices, associated with lower expression of root epidermal Pi transporter genes. Front. Physiol. 3, 91.
Clemmensen, K.E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A., Wallander, H. & Lindahl, B.D. (2013). Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 339(6127), 1615-1618.
Cozzolino, V., Pigna, M., Di Meo, V., Caporale, A.G. & Violante, A. (2010). Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth of Lactuca sativa L. and arsenic and phosphorus availability in an arsenic polluted soil under non-sterile conditions. Appl. soil Ecol. 45(3), 262-268.
Das, T.K. (2019). Arsenic menace in West Bengal (India) and its mitigation through toolbox intervention: an experience to share. In Ground Water Development-Issues and Sustainable Solutions, Springer, Singapore.  pp. 305-314.
Diao, M., Nguyen, T.A., Taran, E., Mahler, S.M. & Nguyen, A.V. (2015). Effect of energy source, salt concentration and loading force on colloidal interactions between Acidithiobacillus ferrooxidans cells and mineral surfaces. Colloids Surf. B. 132, pp.271-280.
Edvantoro, B. B., Naidu, R., Megharaj, M., Merrington, G. & Singleton, I. (2004). Microbial formation of volatile arsenic in cattle dip site soils contaminated with arsenic and DDT. Appl. Soil Ecol. 25(3), 207-217.
Evelin, H., Kapoor, R. & Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann. Bot. 104(7), 1263-1280.
Farkas, B., Kolenčík, M., Hain, M., Dobročka, E., Kratošová, G., Bujdoš, M., Feng, H., Deng, Y., Yu, Q., Illa, R. & Sunil, B.R. (2020). Aspergillus niger decreases bioavailability of Arsenic (V) via biotransformation of manganese oxide into biogenic oxalate minerals. J. Fungus. 6(4), p.270.
Favas, P.J., Pratas, J., Varun, M., D’Souza, R. & Paul, M.S. (2014). Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora. Environ. Risk Assess. Soil Contam., 3, 485-516.
Feldman, P.R., Rosenboom, J. W., Saray, M., Samnang, C., Navuth, P. & Iddings, S. (2007). Assessment of the chemical quality of drinking water in Cambodia. J. Water Health, 5(1), 101-116.
Feng, Q., Su, S., Zeng, X., Zhang, Y., Li, L., Bai, L., Duan, R.& Lin, Z. (2015). Arsenite resistance, accumulation, and volatilization properties of Trichoderma asperellum SM-12 F 1, Penicillium janthinellum SM-12 F 4, and Fusarium oxysporum CZ-8F1. CLEAN–Soil, Air, Water, 43(1), pp.141-146.
Figoli, A., Cassano, A., Criscuoli, A., Mozumder, M. S. I., Uddin, M. T., Islam, M. A. & Drioli, E. (2010). Influence of operating parameters on the arsenic removal by nanofiltration. Water Res. 44(1), 97-104.
Fitz, W.J., Wenzel, W.W., Zhang, H., Nurmi, J., Štipek, K., Fischerova, Z., Schweiger, P., Köllensperger, G., Ma, L.Q. & Stingeder, G. (2003). Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phyto removal efficiency. Environ. Sci. Techol.37(21), pp.5008-5014.
Fontaine, J.A. (1994). Regulating arsenic in Nevada drinking water supplies: past problems, future challenges. Expos. Health, 285-288.
Fordyce, F.M., Williams, T.M., Paijitprapapon, A. & Charoenchaisri, P. (1995). Hydrogeochemistry of arsenic in an area of chronic mining-related arsenism, Ron Phibun district, Nakhon Si Thammarat Province, Thailand: preliminary results.
Francesconi, K., Visoottiviseth, P., Sridokchan, W. & Goessler, W. (2002). Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci. Total Environ., 284(1-3), 27-35.
García-Salgado, S., Raber, G., Raml, R., Magnes, C. & Francesconi, K.A. (2012). Arsenosugar phospholipids and arsenic hydrocarbons in two species of brown macroalgae. Environ. Chem. 9(1), pp.63-66.
Garg, N. & Singla, P. (2012). The role of Glomus mosseae on key physiological and biochemical parameters of pea plants grown in arsenic contaminated soil. Sci. hortic.,143, 92-101.
Gbadebo, A.M. (2005). Arsenic Pollution in aquifers located within limestone areas of Ogun state, Nigeria. In: Natural Arsenic in Groundwater: Occurrence, Remediation and Management, 85-92.
Göhre, V. & Paszkowski, U. (2006). Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta, 223(6), 1115-1122.
González-Chávez, M. D. C. A., del Pilar Ortega-Larrocea, M., Carrillo-González, R., López-Meyer, M., Xoconostle-Cázares, B., Gomez, S.K. & Maldonado-Mendoza, I. E.(2011). Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza. Fungal Biol., 115(12), 1197-1209.
Govarthanan, M., Mythili, R., Kamala-Kannan, S., Selvankumar, T., Srinivasan, P. & Kim, H. (2019). In-vitro bio-mineralization of arsenic and lead from aqueous solution and soil by wood rot fungus, Trichoderma sp. Ecotoxicol. Environ. Saf. 174, pp.699-705.
Green, H.H.(1918). Description of a bacterium which oxidizes arsenite to arsenate, and of one which reduces arsenate to arsenite, isolated from a cattle-dipping Etank. South Af. J. Sci., 14, 465-467.
Gupta, D.K., Srivastava, S., Huang, H.G., Romero-Puertas, M.C. & Sandalio, L.M. (2011). Arsenic tolerance and detoxification mechanisms in plants. In Detoxification of Heavy Metals, Springer Berlin Heidelberg. 169-179.
Gupta, S., Thokchom, S.D. & Kapoor, R. (2021). Arbuscular mycorrhiza improves photosynthesis and restores alteration in sugar metabolism in Triticum aestivum L. grown in arsenic contaminated soil. Front. Plant Sci., 12, 334.
Hijikata, N., Murase, M., Tani, C., Ohtomo, R., Osaki, M. & Ezawa, T. (2010). Polyphosphate has a central role in the rapid and massive accumulation of phosphorus in extraradical mycelium of an arbuscular mycorrhizal fungus. New phytol. 186(2), 285-289.
Huang, J.H., Scherr, F. & Matzner, E. (2007). Demethylation of dimethylarsinic acid and arsenobetaine in different organic soils. Water Air Soil Pollut., 182(1-4), 31-41.
Irshad, S., Xie, Z., Mehmood, S., Nawaz, A., Ditta, A. & Mahmood, Q. (2021). Insights into conventional and recent technologies for arsenic bioremediation: A systematic review. Environ. Sci. Pollut. Res., 1-23.
Irshad, S., Xie, Z., Wang, J., Nawaz, A., Luo, Y., Wang, Y. & Mehmood, S. (2020). Indigenous strain Bacillus XZM assisted phytoremediation and detoxification of arsenic in Vallisneria denseserrulata. J. Hazard. Mater. 381, p.120903.
Jankong, P. & Visoottiviseth, P. (2008). Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Chemosphere, 72(7), 1092-1097.
Jebeli, M.A., Maleki, A., Amoozegar, M.A., Kalantar, E., Izanloo, H. & Gharibi, F. (2017). Bacillus flexus strain As-12, a new arsenic transformer bacterium isolated from contaminated water resources. Chemosphere, 169, pp. 636-641.
Jia, Y., Huang, H., Zhong, M., Wang, F. H., Zhang, L. M. & Zhu, Y. G. (2013). Microbial arsenic methylation in soil and rice rhizosphere. Environ. Sci. Techol., 47(7), 3141-3148.
Jiang, Y., Wang, W., Xie, Q., Liu, N., Liu, L., Wang, D. & Wang, E. (2017). Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 356(6343), 1172-1175.
Khan, A.G. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Ele. Med. Biol. 18(4), 355-364.
Kuehnelt, D. & Goessler, W. (2003). Organoarsenic compounds in the terrestrial environment. Organometallic Comp. Environ., 223-275.
Latef, A.A. (2011). Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.). Mycorrhiza, 21(6), 495-503.
Lazo-Langner, A., Goss, G.D., Spaans, J.N. & Rodger, M.A. (2007). The effect of low-molecular-weight heparin on cancer survival. A systematic review and meta-analysis of randomized trials. J. Thrombosis Haemostasis, 5(4), 729-737.
Lee, E., Han, Y., Park, J., Hong, J., Silva, R.A., Kim, S. & Kim, H. (2015). Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans. J Environ Manage., 147, 124-131.
Lee, Y., Um, I.H.& Yoon, J. (2003). Arsenic (III) oxidation by iron (VI) (ferrate) and subsequent removal of arsenic (V) by iron (III) coagulation. Environ. Sci. Techol., 37(24), 5750-5756.
Le Luu, T. (2019). Remarks on the current quality of groundwater in Vietnam. Environ. Sci. Pollut. Res., 26(2), 1163-1169.
Leng, F., Sun, S., Wang, Y., Jing, Y., Wei, Q. & Li, H. (2016). Arsenic bioleaching in medical realgar ore and arsenicbearing refractory gold ore by combination of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Trop. J. of Pharm. Res., 15(5), 1031-1038.
Lenoir, I., Fontaine, J. & Sahraoui, A.L.(2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry, 123, 4-15.
Li, J., Chen, B., Zhang, X., Hao, Z., Zhang, X. & Zhu, Y.(2021). Arsenic transformation and volatilization by arbuscular mycorrhizal symbiosis under axenic conditions. J. Hazard. Mater. 413, 125390.
Lin, Y.F., Yang, J. & Rosen, B.P. (2007). ArsD: an As (III) metallochaperone for the ArsAB As (III)-translocating ATPase. J. Bioenerg. Biomembr., 39(5-6), 453-458.
Liu, W.J., Zhu, Y.G., Smith, F.A. & Smith, S.E.(2004). Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J. Exp. Bot. 55(403), 1707-1713.
Liu, Y., Zhu, Y.G., Chen, B.D., Christie, P. & Li, X. L.(2005). Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza, 15(3), 187-192.
Liu, C.W. & Wu, M.Z.(2019). Geochemical, mineralogical and statistical characteristics of arsenic in groundwater of the Lanyang Plain, Taiwan. J. Hydrol., 577, 123975.
Loukidou, M.X., Matis, K.A., Zouboulis, A.I.& Liakopoulou-Kyriakidou, M. (2003). Removal of As (V) from wastewaters by chemically modified fungal biomass. Water Res., 37(18), 4544-4552.
Ma, J. F., Yamaji, N., Mitani, N., Xu, X.Y., Su, Y.H., McGrath, S.P. & Zhao, F.J. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc. Nat. Acad. Sci., 105(29), 9931-9935.
Ma, L.Q., Komar, K.M., Tu, C., Zhang, W., Cai, Y. & Kennelley, E.D. (2001). A fern that hyperaccumulates arsenic. Nature, 409(6820), 579.
Macur, R.E., Wheeler, J.T., McDermott, T.R. & Inskeep, W.P. (2001). Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings. Environ. Sci. Techol., 35(18), 3676-3682.
Maldonado-Mendoza, I. E. & Harrison, M. J. (2018). RiArsB and RiMT-11: Two novel genes induced by arsenate in arbuscular mycorrhiza. Fungal Biol. 122(2-3), 121-130.
Mallick, I., Bhattacharyya, C., Mukherji, S., Dey, D., Sarkar, S.C., Mukhopadhyay, U.K. & Ghosh, A. (2018). Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: a step towards arsenic rhizoremediation. Sci. Total Environ., 610, 1239-1250.
Mandal, B.K. & Suzuki, K.T. (2002). Arsenic round the world: a review. Talanta, 58(1), 201-235.
Martínez-Villegas, N., Briones-Gallardo, R., Ramos-Leal, J.A., Avalos-Borja, M., Castañón-Sandoval, A.D., Razo-Flores, E. & Villalobos, M. (2013). Arsenic mobility controlled by solid calcium arsenates: A case study in Mexico showcasing a potentially widespread environmental problem. Environ. Pollut., 176, 114-122.
Mass, M.J., Tennant, A., Roop, B.C., Cullen, W.R., Styblo, M., Thomas, D.J. & Kligerman, A.D. (2001). Methylated trivalent arsenic species are genotoxic. Chem. Res. Toxicol. 14(4), 355-361.
Matschullat, J. (2000). Arsenic in the geosphere-a review. Sci. Total Environ., 249(1-3), 297-312.
Mazumder, D.G. (2005). Effect of chronic intake of arsenic-contaminated water on liver. Toxicol. Appl. Pharmacol. 206(2), 169-175.
Medunić, G., Fiket, Ž. & Ivanić, M. (2020). Arsenic contamination status in Europe, Australia, and other parts of the world. In Arsenic in Drinking Water and Food. Springer, Singapore, pp. 183-233.
Meier, S., Borie, F., Bolan, N. & Cornejo, P. (2012). Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit. Rev. Environ. Sci. Technol. 42(7), 741-775.
Mohd, S., Kushwaha, A.S., Shukla, J., Mandrah, K., Shankar, J., Arjaria, N., Saxena, P.N., Khare, P., Narayan, R., Dixit, S. & Siddiqui, M.H. (2019). Fungal mediated biotransformation reduces toxicity of arsenic to soil dwelling microorganism and plant. Ecotoxicol. Environ. Saf. 176, pp.108-118.
Mondal, P., Bhowmick, S., Chatterjee, D., Figoli, A. & Van der Bruggen, B. (2013). Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions. Chemosphere, 92(2), 157-170.
Mujawar, S.Y., Vaigankar, D.C. & Dubey, S.K. (2021). Biological characterization of Bacillus flexus strain SSAI1 transforming highly toxic arsenite to less toxic arsenate mediated by periplasmic arsenite oxidase enzyme encoded by aioAB genes. BioMetals, pp.1-13.
Mukherjee, A., Gupta, S., Coomar, P., Fryar, A.E., Guillot, S., Verma, S. & Charlet, L.(2019). Plate tectonics influence on geogenic arsenic cycling: From primary sources to global groundwater enrichment. Sci. Total Environ.683, 793-807.
Mukhopadhyay, R., Rosen, B.P., Phung, L.T. & Silver, S.(2002). Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol. Rev. 26(3), 311-325.
Mendoza-Chávez, C.E., Carabin, A., Dirany, A., Drogui, P., Buelna, G., Meza-Montenegro, M.M., Ulloa-Mercado, R.G., Diaz-Tenorio, L.M., Leyva-Soto, L.A. & Gortáres-Moroyoqui, P. (2020). Statistical optimization of arsenic removal from synthetic water by electrocoagulation system and its application with real arsenic-polluted groundwater. Environ. technol. 1-12.
Murray, L.A., Raab, A., Marr, I.L. & Feldmann, J. (2003). Biotransformation of arsenate to arsenosugars by Chlorella vulgaris. Appl. Organometal. Chem. 17(9), 669-674.
Mushtaq, T., Shah, A.A., Akram, W. & Yasin, N.A. (2020). Synergistic ameliorative effect of iron oxide nanoparticles and Bacillus subtilis S4 against arsenic toxicity in Cucurbita moschata: polyamines, antioxidants, and physiochemical studies. Int. J. Phytoremediation., 22(13), pp. 1408-1419.
National Research Council (US). (1980). Committee on the Biological Effects of Ionizing Radiations, & United States. Environmental Protection Agency. Office of Radiation Programs. The Effects on Populations of Exposure to Low Levels of Ionizing Radiation, National Academy Press, 3095.
Nelson, K.W. (1977). Industrial contributions of arsenic to the environment. Environ. Health Persp., 19, 31-34.
Nguyen, T.H., Tran, H.N., Vu, H.A., Trinh, M.V., Nguyen, T.V., Loganathan, P., Vigneswaran, S., Nguyen, T.M., Vu, D.L. & Nguyen, T.H.H. (2020). Laterite as a low-cost adsorbent in a sustainable decentralized filtration system to remove arsenic from groundwater in Vietnam. Sci.Total Environ. 699,134267
Nottingham, A.T., Turner, B.L., Winter, K., van der Heijden, M.G. & Tanner, E.V. (2010). Arbuscular mycorrhizal mycelial respiration in a moist tropical forest. New Phytol. 186(4), 957-967.
Oremland, R.S. & Stolz, J.F.(2003). The ecology of arsenic. Science. 300(5621), 939–944.
Oyarzun, R., Lillo, J., Higueras, P., Oyarzún, J., Maturana, H. (2004). Strong arsenic enrichment in sediments from the Elqui watershed, Northern Chile: industrial (gold mining at El Indio–Tambo district) vs. geologic processes. J. Geochem. Explor., 84(2), 53-64.
Pal, A. & Paknikar, K.M. (2012). Bioremediation of arsenic from contaminated water. In: Microorganisms in Environmental Management, Springer, Dordrecht, pp. 477-523.
Pathare, V., Srivastava, S., Sonawane, B.V. & Suprasanna, P. (2016). Arsenic stress affects the expression profile of genes of 14-3-3 proteins in the shoot of mycorrhiza colonized rice. Physiol. Mol. Biol. Plants, 22(4), 515-522.
Persson, B.L., Petersson, J., Fristedt, U., Weinander, R., Berhe, A. & Pattison, J. (1999). Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation. Biochimica et Biophysica acta, 1422(3), 255-272.
Peters, G.P. (2008). From production-based to consumption-based national emission inventories. Ecol. Econ., 65(1), 13-23.
Peters, R.W. (1999). Chelant extraction of heavy metals from contaminated soils. J. Hazard. Mater. 66(1-2), 151-210.
Pigna, M., Cozzolino, V., Giandonato Caporale, A., Mora, M.L., Di Meo, V., Jara, A.A. & Violante, A. (2010). Effects of phosphorus fertilization on arsenic uptake by wheat grown in polluted soils. J. Soil Sci. Plant Nutr., 10(4), 428-442.
Pokhrel, D. & Viraraghavan, T. (2006). Arsenic removal from an aqueous solution by a modified fungal biomass. Water Res. 40(3), 549-552.
Qin, J., Rosen, B.P., Zhang, Y., Wang, G., Franke, S. & Rensing, C. (2006). Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc. Nat. Acad. Sci. United States Am. 103(7), 2075-2080.
Rabbani, U., Mahar, G., Siddique, A. & Fatmi, Z. (2017). Risk assessment for arsenic-contaminated groundwater along River Indus in Pakistan.  Environ. Geochem., Health, 39(1), 179-190.
Rahman, A., Nahar, N., Nawani, N. N., Jass, J., Ghosh, S., Olsson, B. & Mandal, A. (2015). Comparative genome analysis of Lysinibacillus B1-CDA, a bacterium that accumulates arsenics. Genomics, 106(6), 384-392.
Ranjan, R., Kumar, N., Gautam, A., Dubey, A.K., Pandey, S.N. & Mallick, S. (2021). Chlorella sp. modulates the glutathione mediated detoxification and S-adenosylmethionine dependent methyltransferase to counter arsenic toxicity in Oryza sativa L. Ecotoxicol. Environ. Saf. 208, p.111418.
Rapparini, F., Llusià, J. & Peñuelas, J. (2008). Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Plant Biol., 10(1), 108-122.
Ravenscroft, P., Brammer, H. & Richards, K. (2011). Arsenic pollution: a global synthesis, John Wiley & Sons, 94.
Rodriguez-Freire, L., Moore, S.E., Sierra-Alvarez, R., Root, R.A., Chorover, J.& Field, J.A. (2016). Arsenic remediation by formation of arsenic sulfide minerals in a continuous anaerobic bioreactor. Biotechnol. Bioeng. 113(3), pp.522-530.
Sánchez, Y., Amrán, D., Fernández, C., de Blas, E. & Aller, P. (2008). Genistein selectively potentiates arsenic trioxide-induced apoptosis in human leukemia cells via reactive oxygen species generation and activation of reactive oxygen species-inducible protein kinases (p38-MAPK, AMPK). Int. J. Cancer, 123(5), 1205-1214.
Shalaby, A.M. (2003). Responses of arbuscular mycorrhizal fungal spores isolated from heavy metal-polluted and unpolluted soil to Zn, Cd, Pb and their interactions in vitro. Pakistan J. Biol. Sci. 6(16), 1416–1422.
Shaji, E., Santosh, M., Sarath, K.V., Prakash, P., Deepchand, V. & Divya, B.V. (2021). Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geosci. frontiers, 12(3), 101079.
Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. Article ID 217037.
Sharma, S., Anand, G., Singh, N. & Kapoor, R. (2017). Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism. Front. Plant Sci. 8, 906.
Sharma, V.K. (2007). Ferrate studies for disinfection and treatment of drinking water Advances in Control of Disinfection By-Products in Drinking Water Systems, 1-6
Sharma, V.K. & Sohn, M. (2009). Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ. Int. 35(4), 743-759.
Shen, Z.X., Chen, G.Q., Ni, J.H., Li, X.S., Xiong, S.M., Qiu, Q.Y., Zhu, J., Tang, W., Sun, G.L., Yang, K.Q. & Chen, Y. (1997). Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood J. Am. Soci. Hematol. 89(9), 3354-3360.
Sher, S., Sultan, S. & Rehman, A. (2021). Characterization of multiple metal resistant Bacillus licheniformis and its potential use in arsenic contaminated industrial wastewater. Appl. Water Sci., 11(4), 1-7.
Sierra-Alvarez, R., Yenal, U., Field, J. A., Kopplin, M., Gandolfi, A.J. & Garbarino, J. R.(2006). Anaerobic biotransformation of organo-arsenical pesticides monomethyl-arsonic acid and dimethyl-arsinic acid. J. Agri. Food Chem. 54(11), 3959-3966.
Silver, S. & Phung, L.T. (2005). Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl. Environ. Microbiol. 71(2), 599-608.
Singh, M., Srivastava, P.K., Verma, P.C., Kharwar, R.N., Singh, N. & Tripathi, R.D. (2015). Soil fungi for mycoremediation of arsenic pollution in agriculture soils. J. Appl. Microbiol. 119(5), 1278-1290
Smedley, P.L. (1996). Arsenic in rural groundwater in Ghana: part special issue: hydrogeochemical studies in sub-Saharan Africa. J. Afri. Earth Sci., 22(4), 459-470.
Smedley, P.L. & Kinniburgh, D.G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem., 17, 517–568.
Smith, E., Juhasz, A.L., Weber, J. & Naidu, R. (2008). Arsenic uptake and speciation in rice plants grown under greenhouse conditions with arsenic contaminated irrigation water. Sci. Total Environ. 392(2-3), 277-283.
Smith, S.E.& Read, D.J. (2008). Mycorrhizal symbiosis. 3rd. Academic Press New York, 605.
Soto, J., Ortiz, J., Herrera, H., Fuentes, A., Almonacid, L., Charles, T.C. & Arriagada, C. (2019). Enhanced arsenic tolerance in Triticum aestivum inoculated with arsenic-resistant and plant growth promoter microorganisms from a heavy metal-polluted soil. Microorganisms, 7(9), 348.
Spagnoletti, F.N., Balestrasse, K., Lavado, R.S. & Giacometti, R. (2016). Arbuscular mycorrhiza detoxifying response against arsenic and pathogenic fungus in soybean. Ecotoxicol. Environ. Saf., 133, 47-56.
Squibb, K.S.& Fowler, B.A. (1983). The toxicity of arsenic and its compounds. Biol. Environ. Effects Arsenic, 233.
Srivastava, P.K., Vaish, A., Dwivedi, S., Chakrabarty, D., Singh, N. & Tripathi, R.D. (2011). Biological removal of arsenic pollution by soil fungi. Sci. Total Environ. 409(12), 2430- 2442.
Srivastava, S., Suprasanna, P. & D’souza, S.F. (2012). Mechanisms of arsenic tolerance and detoxification in plants and their application in transgenic technology: a critical appraisal. Int. J. Phytorem. 14(5), 506-517.
Stopelli, E., Duyen, V.T., Mai, T.T., Trang, P.T., Viet, P.H., Lightfoot, A., Kipfer, R., Schneider, M., Eiche, E., Kontny, A. & Neumann, T. (2020). Spatial and temporal evolution of groundwater arsenic contamination in the Red River delta, Vietnam: Interplay of mobilisation and retardation processes. Sci. Total Environ. 717, 137143. 
Stolz, J.F., Basu, P., Santini, J.M. & Oremland, R.S. (2006). Arsenic and selenium in microbial metabolism. Ann. Rev. Microbiol. 60, 107-130.
Stroud, J.L., Norton, G.J., Islam, M.R., Dasgupta, T., White, R.P., Price, A.H. & Zhao, F.J. (2011). The dynamics of arsenic in four paddy fields in the Bengal delta. Environ. Pollut. 159(4), 947-953.
Su, S.M., Zeng, X.B., Li, L.F., Duan, R, Bai, L. Y., Li, A.G. & Jiang, S. (2012). Arsenate reduction and methylation in the cells of Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1 investigated with X-ray absorption near edge structure. J. Hazard. Mater. 243, 364-367.
Sullivan, C., Tyrer, M., Cheeseman, C.R. & Graham, N.J. (2010). Disposal of water treatment wastes containing arsenic- a review. Sci. Total Environ. 408(8), 1770-1778.
Sun, G., Yu, G., Zhao, L., Li, X., Xu, Y., Li, B. &Sun, D. (2019). Endemic Arsenic Poisoning. In Endemic Disease in China, Springer, Singapore, pp. 97-123.
Tangahu, B.V., Sheikh Abdullah, S.R., Basri, H., Idris, M., Anuar, N. & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Engin. 2011.
Tani, Y., Miyata, N., Ohashi, M., Ohnuki, T., Seyama, H., Iwahori, K. & Soma, M. (2004). Interaction of inorganic arsenic with biogenic manganese oxide produced by a Mn-oxidizing fungus, strain KR21-2. Environ. Sci. Technol. 38(24), 6618-6624.
Tapase, S.R. & Kodam, K.M. (2018). Assessment of arsenic oxidation potential of Microvirga indica S-MI1b sp. nov. in heavy metal polluted environment.  Chemosphere, 195, pp.1-10.
Tonin, C., Vandenkoornhuyse, P., Joner, E. J., Straczek, J. & Leyval, C. (2001). Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza, 10(4), 161–168.
Tripathi, P., Singh, P.C., Mishra, A., Srivastava, S., Chauhan, R., Awasthi, S. & Tripathi, R.D. (2017). Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum L.). Environ. Pollut. 223, 137-145.
Tripathi, P., Tripathi, R.D., Singh, R.P., Dwivedi, S., Goutam, D., Shri, M. & Chakrabarty, D. (2013). Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecol. Engin., 52, 96-103.
Tripathi, R.D., Srivastava, S., Mishra, S., Singh, N., Tuli, R., Gupta, D.K. & Maathuis, F.J. (2007). Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol., 25(4), 158-165.
Tsai, S.L., Singh, S. & Chen, W. (2009). Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr. Opin. Biotechnol., 20(6), 659-667.
Tseng, C.H., Tai, T.Y., Chong, C.K., Tseng, C.P., Lai, M.S., Lin, B.J. & Chen, C.J. (2000). Long-term arsenic exposure and incidence of non-insulin-dependent diabetes mellitus: a cohort study in arseniasis-hyperendemic villages in Taiwan. Environ. Health Persp., 108(9), 847-851.
Uddin, R. & Huda, N.H. (2011). Arsenic poisoning in Bangladesh. Oman Med. J. 26(3), 207.
Upadhyay, M.K., Yadav, P., Shukla, A. & Srivastava, S. (2018). Utilizing the potential of microorganisms for managing arsenic contamination: a feasible and sustainable approach. Front. Environ. Sci. 6, 24.
Ure, A.M. & Berrow, M.L. (1982). The elemental constituents of soils. In: Environmental chemistry 2. The Royal Society of Chemistry, London.
Urík, M., Farkas, B., Miglierini, M.B., Bujdoš, M., Mitróová, Z., Kim, H. & Matúš, P., (2021). Mobilisation of hazardous elements from arsenic-rich mine drainage ochres by three Aspergillus species. J. Hazard. Mater., 409, p.124938.
Vallee, B.L., Ulmer, D.D. & Wacker, W.E.C. (1960). Arsenic toxicology and biochemistry. J. Occup. Environ. Med. 2(7), p.358.
Vallino, M., Massa, N., Lumini, E., Bianciotto, V., Berta, G. & Bonfante, P. (2006). Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Environ. Microbiol. 8(6), 971-983.
Vasudevan, S., Mohan, S., Sozhan, G., Raghavendran, N.S. & Murugan, C.V.(2006). Studies on the oxidation of As (III) to As (V) by in-situ-generated hypochlorite. Indus. Engin. Chem. Res., 45(22), 7729-7732.
Villadangos, A.F., Van Belle, K., Wahni, K., Tamu Dufe, V., Freitas, S., Nur, H. & Messens, J. (2011). Corynebacterium glutamicum survives arsenic stress with arsenate reductases coupled to two distinct redox mechanisms. Mol. Microbiol. 82(4), 998-1014.
Visoottiviseth, P. & Panviroj, N. (2001). Selection of fungi capable of removing toxic arsenic compounds from liquid medium. Sci. Asia, 27, 83-92.
Waghunde, R.R., Shelake, R.M. & Sabalpara, A.N. (2016). Trichoderma: A significant fungus for agriculture and environment. Af. J. Agric. Res. 11(22), 1952-1965.
Wang, S.L. & Zhao, X.Y. (2009). On the potential of biological treatment for arsenic contaminated soils and groundwater. J. Environ. Manage. 90(8), 2367–2376.
Wang, Y., Zhang, C., Zheng, Y. & Ge, Y. (2017). Bioaccumulation kinetics of arsenite and arsenate in Dunaliella salina under different phosphate regimes. Environ. Sci. Pollut. Res. 24(26), pp.21213-21221.
WOOLSON, E.A. (1983). Emissions, cycling and effects of arsenic in soils (pp. 51-139). Elsevier, Amsterdam.
WRUD (2001). Preliminary Study on Arsenic Contamination in Selected Areas of Myanmar. Report of the Water Resources Utilization Department, Ministry of Agriculture and Irrigation, Myanmar.
Wu, F., Hu, J., Wu, S. & Wong, M.H. (2015). Grain yield and arsenic uptake of upland rice inoculated with arbuscular mycorrhizal fungi in As-spiked soils. Environ. Sci. Pollut. Res. 22(12), 8919-8926.
Wu, Q. S. & Zou, Y.N. (2009). Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environ. 55(10), 436-442.
Wu, Q., Wang, S., Thangavel, P., Li, Q., Zheng, H., Bai, J. & Qiu, R. (2011). Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings. Int. J. Phytorem., 13(8), 788-804.
Wuana, R.A. & Okieimen, F.E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res Notices. 2011.
Xiao, X.Y., Chen, T.B., Liao, X.Y., Wu, B., Yan, X.L., Zhai, L.M., Xie, H. & Wang, L.X. (2008). Regional distribution of arsenic contained minerals and arsenic pollution in China. Geograp. Res., 27(1), pp.201-212.
Xie, Z., Lu, G., Liu, J., Yan, Z., Ma, B., Zhang, Z. & Chen, W.(2015). Occurrence, bioaccumulation, and trophic magnification of pharmaceutically active compounds in Taihu Lake, China. Chemosphere, 138, 140-147.
Xue, X.M., Yan, Y., Xiong, C., Raber, G., Francesconi, K., Pan, T., Ye, J. & Zhu, Y.G. (2017). Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120. Environ. Pollut. 228, 111-117.
Yamaji, N. & Ma, J.F.(2011). Further characterization of a rice silicon efflux transporter, Lsi2. Soil Sci. Plant Nutr. 57(2), 259-264.
Yan, L., Hu, H., Zhang, S., Chen, P., Wang, W. & Li, H. (2017). Arsenic tolerance and bioleaching from realgar based on response surface methodology by Acidithiobacillus ferrooxidans isolated from Wudalianchi volcanic lake, northeast China. Electron. J. Biotechnol., 25, pp.50-57.
Yan, Y., Ye, J., Xue, X.M. & Zhu, Y.G. (2015). Arsenic demethylation by a C•As lyase in cyanobacterium Nostoc sp. PCC 7120. Environ. Sci. Technol. 49(24), 14350-14358.
Yang, H. C.& Rosen, B. P. (2016). New mechanisms of bacterial arsenic resistance. Biomed. J. 39(1), 5-13.
Yin, X., Wang, L., Zhang, Z., Fan, G., Liu, J., Sun, K. & Sun, G.X. (2017). Biomethylation and volatilization of arsenic by model protozoan Tetrahymena pyriformis under different phosphate regimes. Int. J. Environ. Res. Public Health, 14(2), p.188.
Yin, X.X., Chen, J., Qin, J., Sun, G.X., Rosen, B.P. & Zhu, Y.G. (2011). Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant physiol. 156(3), 1631-1638.
Yoshizuka, K., Nishihama, S. & Sato, H. (2010). Analytical survey of arsenic in geothermal waters from sites in Kyushu, Japan, and a method for removing arsenic using magnetite. Environ. Geochem. Health, 32(4), 297-302.
Zhang, X., Ren, B.H., Wu, S.L., Sun, Y.Q., Lin, G. & Chen, B.D. (2015). Arbuscular mycorrhizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil. Chemosphere, 119, 224-230.
Zhang, Z., Guo, H., Liu, S., Weng, H., Han, S. & Gao, Z. (2020). Mechanisms of groundwater arsenic variations induced by extraction in the western Hetao Basin, Inner Mongolia, China. J. Hydrol. 583, 124599
Zhao, F.J., McGrath, S.P. & Meharg, A. A. (2010). Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Ann. Rev. Plant Biol. 61, 535-559.
Zhu, F., Yang, M., Luo, Z.X., Yu, R.L., Hu, G.R. & Yan, Y.(2020). Bioaccumulation and biotransformation of arsenic in Leptolyngbya boryana. Environ. Sci. Pollut. Res. 27, pp. 29993-30000.
Zubair, M., Martyniuk, C.J. & Shaheen, A. (2018). Rising level of arsenic in water and fodder: A growing threat to livestock and human populations in Pakistan. Toxin Reviews, 37(3), 171-181.
Zuzolo, D., Cicchella, D., Demetriades, A., Birke, M., Albanese, S., Dinelli, E., Lima, A., Valera, P. & De Vivo, B. (2020). Arsenic: Geochemical distribution and age-related health risk in Italy. Environ. Res. 182, 109076.
Section
Research Articles

How to Cite

Bioremediation of arsenic contamination from the environment: New approach to sustainable resource management . (2021). Journal of Applied and Natural Science, 13(4), 1499-1517. https://doi.org/10.31018/jans.v13i4.2986