Magmatic origin and petrogenesis characterization of syenite rock from Pakkanadu alkaline complex, Southern Granulite Terrain, India: Implication on emplacement and petrogenetic history
Article Main
Abstract
The present study mainly focused on understanding the magmatic origin and petrogenesis characterization based on the Petrography, major, trace and Rare Earth Element (REE) signatures in the alkaline syenite from Pakkanadu alkaline carbonatite complex. The alkaline plutons from South Indian granulite terrain are intruded along with Archaean epidote-hornblende gneisses. The study area was carbonatite complexes of Tamil Nadu and is characterized by a group of rock associations Carbonatite-Syenite-Pyroxenite - Dunite. From Harker various patterns Pakkanadu alkaline complex syenite showed increasing trends of SiO2, Al2O3, Na2O + K2O opposite to decreasing order of CaO, Fe2O3, MgO, TiO2, P2O5 and MnO trend, suggest fractionation of clinopyroxene, hornblende, sphene, apatite and oxide minerals and feldspar that ruled the fractionation. The concentration of trace elements enriched in Large Ion lithophile elements (LILE) (Ba, Sr, and Rb) elements and High Field Strength Elements (HFSEs) indicated that the dyke intrusion by differentiation of magma from a mantle source. Rare earth element (REE) distribution of Light rare earth element (LREE) enriched and High rare earth element (HREE) depleted pattern show strongly fractionated pattern with moderate Eu anomalies. Plots of tectonic discrimination diagrams of Pakkanadu samples fall in the field of syn-COLG field to the VAG syn- COLG field. For the first time, this type of study was carried out in the study region in a detailed manner. The present study significantly exposed the petrography, petrogenesis and magmatic origin process in the Pakkanadu alkaline carbonatite complex.
Article Details
Article Details
Alkaline Syenite, Pakkanadu Complex, Southern Granulite Terrane, Tectonic setting
Ashwal, L. D., Patzelt, M., Schmitz, M. D. & Burke, K. (2016). Isotopic evidence for alithospheric origin of alkaline rocks and carbonatites: an example from southern Africa. Canadian Journal of Earth Sciences., 53(11), 1216-1226. doi.org/10.1139/cjes-2015-0145
Burke, K., Ashwal, L. D. & Webb, S. J. (2003). New way to map old sutures using deformed alkaline rocks and carbonatites. Geology., 31(5), 391-394. doi: 10.1130/0091-7613(2003)031<0391:NWTMOS>2.0.CO;2
Burke, K., Khan, S. D. & Mart, R. W. (2008). Grenville Province and Monteregian carbonatite and nepheline syenite distribution related to rifting, collision, and plume passage. Geology., 36(12), 983-986. doi:10.1130/G25247A.1
Chakrabarty, A., Mitchell, R. H., Ren, M., Saha, P. K., Pal, S., Pruseth, K. L. & Sen, A. K. (2016). Magmatic, hydrothermal and subsolidus evolution of the agpaitic nepheline syenites of the Sushina Hill Complex, India: implications for the metamorphism of peralkaline syenites. Mineralogical Magazine, 80(7), 1161-1193. doi: doi.org/10.1180/minmag.2016.080.057
Das, S., Sanyal, S., Karmakar, S., Sengupta, S. & Sengupta, P. (2019). Do the deformed alkaline rocks always serve as a marker of continental suture zone? A case study from parts of the Chotanagpur Granite Gneissic complex, India. Journal of Geodynamics., 129, 59-79. doi: 10.1016/j.jog.2018.10.001
Fitton, J. G. & Upton, B. G. (1987). Alkaline igneous rocks: Geological Society of London., Special Publication.
Floyd, P. A. & Winchester, J. A. (1975). Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary Science Letters., 27(2), 211-218. doi.org/10.1016/0012-821X(75)90031-X
Gangatharan, P. & Anbarasu, K. (2020 a). Structural and Textural Characteristic of Syenite Intrusions from Pakkanadu and Pikkili Alkaline Syenite complex Tamilnadu South India. PalArch's Journal of Archaeology of Egypt/Egyptology., 17(9), 4356-4364.
Gangatharan, P. & Anbarasu, K. (2020 b). Geochemistry Characterization of Alkaline Syenite from Pakkanadu Alkaline Carbonatite Complex, Ultramafic rocks from in Southern Granulite Terrain. PalArch's Journal of Archaeology of Egypt/Egyptology., 17(9), 7736-7746.
Gopalakrishnan, K. & Ganesan, T. M. (1992). A new tectonic model for the evolution of alkaline provinces of northern Tamilnadu. Record Geol. Surv. India., 125(Part-5), 93-95.
Gopalakrishnan, K. (1993). Supportive field evidence for Dharmapuri suture rift zone, Tamil Nadu. Records of the Geological survey of India., 126 (Part-5), 141-145.
Gopalakrishnan, K. (1996). An overview of the southern granulite terrain, India Constraints in the Precambrian assembly of Gondwanaland. Proc.of 9th International Gondwana Symposium, “Gondwana Nine” Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi, vol.2, pp. 1003-1026.
Gopalakrishnan, K., V. Subramanian. & R. Upendran., (2002). A Tectonic domain based classification of alkaline complexes, alkaline–carbonatite complexes and related rocks within Southern Granulite Terrain, India, its significance from a regional perspective. National Seminar on Alkaline carbonatite magmatic activities; their geological to tectonic settings and associated mineralization to the Indian Panorama. Kakatiya University, Warangal. Andhra Pradesh. Abstract Volume.
Hippe, K., Möller, A., von Quadt, A., Peytcheva, I. & Hammerschmidt, K. (2016). Zircon geochronology of the Koraput alkaline complex: insights from combined geochemical and U–Pb–Hf isotope analyses, and implications for the timing of alkaline magmatism in the Eastern Ghats Belt, India. Gondwana Research., 34, 205-220. doi.org/10.1 016/j.gr.2015.02.021
Jeyabalan, M., Udayasankar, S., Thiagarajan, J., Sasikumar, S., Nandhakumar, E., Rajakumaran, M. & Nagamani, S. (2015). Petrology and geochemistry of lamprophyre rock types of Salem, Dharmapuri, Krishnagiri, and Namakkal districts, Tamil Nadu. Journal of Applied Geochemistry., 17(2), 213-235.
Kerrich, R. & Wyman, D. A. (1997). Review of developments in trace-element fingerprinting of geodynamic settings and their implications for mineral exploration. Australian Journal of Earth Sciences., 44(4), 465-487. doi.org/10.1080/08120099 708728327
Krishnamurthy, P. (2019). Carbonatites of India. Journal of the Geological Society of India., 94(2), 117-138. doi. 10.1007/s12594-019-1281-y
Kumar, A., Charan, S. N., Gopalan, K. & Macdougall, J. D. (1998). A long-lived enriched mantle source for two Proterozoic carbonatite complexes from Tamil Nadu, southern India. Geochimica et Cosmochimica Acta., 62(3), 515-523. doi.org/10.1016/ S0016-7037(97)00341-4
Kumar, K. V., Frost, C. D., Frost, B. R. & Chamberlain, K. R. (2007). The Chimakurti, Errakonda, and Uppalapadu plutons, Eastern Ghats Belt, India: an unusual association of tholeiitic and alkaline magmatism. Lithos., 97(1-2), 30-57. doi 10.1016/j.lithos.2006.11.008
Leelanandam, C., Burke, K., Ashwal, L. D. & Webb, S. J. (2006). Proterozoic mountain building in Peninsular India: an analysis based primarily on alkaline rock distribution. Geological Magazine., 143(2), 195-212. doi.org/10.1017/S0016756805001664
Middlemost, E.A.K. (1994). Naming materials in the magma/igneous rock system. Earth-Science Reviews., 37 (1994) 215-224. doi.org/10.1016/0012-8252(94)90029-9
Miyazaki, T., Rajesh, H.M., Ram Mohan, V., Rajasekaran, K.C., Kalaiselvan, A., Rao, A.T. & Srinivasa Rao, K. (1999). Field study of alkaline plutons in Tamil Nadu and Andhra Pradesh, South India, 1997-1998. Jour. Geosci., Osaka City Univ., vol. 42.
Miyazaki, T. & Santosh, M. (2005). Cooling history of the Puttetti alkali syenite pluton, southern India. Gondwana Research., 8(4), 567-574. doi.org/10.1016/S1342-937X(05)71156-4
Miyazaki, T., Kagami, H., Mohan, V. R., Shuto, K. & Morikiyo, T. (2003). Enriched subcontinental lithospheric mantle in the northern part of the South Indian Granulite Terrain: evidence from Yelagiri and Sevattur syenite plutons, Tamil Nadu, South India. Gondwana Research., 6(4), 585-594. doi 10.1016/S1342-937X(05)71009-1
Moller, A., Geisler, T., Schleicher, H., Todt, W., Viladkar, S. G. & Subramanian, V. (2001). Inter-relationship between carbonatite-pyroxenite-syenite complexes of southern India. In Symposium of Carbonatites and Associated Alkaline Rocks and Field Workshop on Carbonatites of Tamil Nadu, Chennai, India (pp. 15-16).
Mukhopadhyay, S., Ray, J., Chattopadhyay, B., Sengupta, S., Ghosh, B. & Mukhopadhyay, S. (2011). Significance of mineral chemistry of syenites and associated rocks of Elagiri Complex, Southern Granulite Terrane of the Indian Shield. Journal of the Geological Society of India., 77(2), 113-129.
Natarajan, M., Rao, B. B., Parthasarathy, R., Kumar, A. & Gopalan, K. (1994). 2.0 GA Old Pyroxenite-Carbonatite Complex of Hogenakal, Tamil-Nadu, South-India. Precambrian Research., doi.org/10.1016/0301-9268(94)90104-X
Pandit, M.K., Sial, A.N., Sukumaran, G.B., Ramanathan, S. & Ferreira, V. P., (1998). Carbon and oxygen isotopic variation in Tamil Nadu carbonatites, South India. Current science., 74(7), pp.620-624.
Pandit, M.K., Sial, A.N., Sukumaran, G.B., Pimentel, M.M., Ramasamy, A.K. and Ferreira, V.P., (2002). Depleted and enriched mantle sources for Paleo-and Neoproterozoic carbonatites of southern India: Sr, Nd, C–O isotopic and geochemical constraints. Chemical geology., 189(1-2), pp.69-89.
Paul, D., Chandra, J., & Halder, M. (2020). Proterozoic alkaline rocks and carbonatites of peninsular india: a review. Episodes Journal of International Geoscience., 43(1), 249-277. doi.org/10.18814/epiiugs/2020/020015
Pearce, J. (1996). Sources and settings of granitic rocks. Episodes., 19, 120-125.
Pearce, J. A., & Cann, J. R. (1973). Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and planetary science letters., 19(2), 290-300. doi.org/10.1016/0012-821X(73)90129-5
Pearce, J. A., Harris, N. B. & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology., 25(4), 956-983. doi.org/10.1093/petrology/25.4.956
Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos., 100(1-4), 14-48. doi.org/10.1016/j.lithos.2007.06.016
Ranjan, S., Upadhyay, D., Abhinay, K., Pruseth, K. L., & Nanda, J. K. (2018). Zircon geochronology of deformed alkaline rocks along the Eastern Ghats Belt margin: India–Antarctica connection and the Enderbia continent. Precambrian Research., 310, 407-424.
Rao, M. S., & Narayana, B. L. (2002). Geochemistry and petrogenesis of Kunduru Betta calc-alkaline ring complex in the Dharwar Craton, southern India. Gondwana Research., 5(2), 453-465. doi.10.1016/S1342-937X (05)70735-8
Renjith, M. L., Charan, S. N., Subbarao, D. V., Babu, E. V. S. S. K., & Rajashekhar, V. B. (2014). Grain to outcrop-scale frozen moments of dynamic magma mixing in the syenite magma chamber, Yelagiri Alkaline Complex, South India. Geoscience Frontiers., 5(6), 801-820. pp.73-94. doi.org/10.10 16/j.gsf.201 3.08.006
Rollinson, H.R. (1993) Using geochemical data: evaluation, presentation, interpretation. Longman Group, London., UK. 352p.
Satyanarayanan, M., Balaram, V., Sawant, S. S., Subramanyam, K. S. V., & Krishna, G. V. (2014). High precision multielement analysis on geological samples by HR-ICP-MS. In 28th ISMAS Symposium Cum Workshop on Mass Spectrometry (pp. 181-184). Indian Society for Mass Spectrometry Mumbai.
Santosh, M., Iyer, S. S., Vasconcellos, M. B. A., & Enzweiler, J. (1989). Late Precambrian alkaline plutons in southwest India: geochronologic and rare-earth element constraints on Pan-African magmatism. Lithos., 24(1), 65-79. doi.org/10.1016/0024-4937(89)90016-9
Schleicher, H., Kramm, U., Pernicka, E., Schidlowski, M., Schmidt, F., Subramanian, V., & Viladkar, S. G. (1998). Enriched subcontinental upper mantle beneath southern India: evidence from Pb, Nd, Sr, and C–O isotopic studies on Tamil Nadu carbonatites. Journal of Petrology., 39(10), 1765-1785. doi.org/10.1093/petroj/39.10.1765
Schleicher, H. (2019) In-situ Determination of Trace Element and REE Partitioning in a Natural Apatite-Carbonatite Melt System using Synchrotron XRF Microprobe Analysis. Jour. Geol. Soc. India., v.93, pp. 305-312.
Srinivas, M., K. Rajendra Prasad, & K.Sreenu. (2011). Petrology and geochemistry of syenite at Kamaneri area, Salem District, Tamil Nadu. Jour.App. Geochem. v 13. No 1. pp 15 to 26.
Taylor Jr, H. P., Frechen, J., & Degens, E. T. (1967). Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden. Geochimica et Cosmochimica Acta., 31(3), 407-430. doi.org/10.1016/0016-7037(67)90051-8
Upadhyay, D., & Raith, M. M. (2006a). Intrusion age, geochemistry and metamorphic conditions of a quartz-monzosyenite intrusion at the craton–Eastern Ghats Belt contact near Jojuru, India. Gondwana Research., 10(3-4), 267-276. doi10.1016/j.gr.2006.02.011
Upadhyay, D., & Raith, M. M. (2006b). Petrogenesis of the Kunavaram alkaline complex and the tectonothermal evolution of the neighboring Eastern Ghats Belt granulites, SE India. Precambrian Research., 150(1-2), 73-94. doi 10.1016/j.precamres.2006.07.006
Upadhyay, D., Jahn-Awe, S., Pin, C., Paquette, J. L., & Braun, I. (2006c). Neoproterozoic alkaline magmatism at Sivamalai, southern India. Gondwana Research., 10(1-2), 156-166. doi org/10.1016/j.gr.2005.11.020
Upadhyay, D. (2008). Alkaline magmatism along the southeastern margin of the Indian shield: implications for regional geodynamics and constraints on craton–Eastern Ghats Belt suturing. Precambrian Research., 162(1-2), 59-69. doi 10.1016/j.precam res.2007.07.012
Vrublevskii, V. V., Gertner, I. F., Ernst, R. E., Izokh, A. E., & Vishnevskii, A. V. (2019). The overmaraat-gol alkaline pluton in northern mongolia: U–Pb age and preliminary implications for magma sources and tectonic setting. Minerals., 9(3), 170. doi 10.3390/ min9030170
Woolley, A. R. (1987). Alkaline rocks and carbonatites of the world: Africa. Geological Society of London.
Woolley, A. R., & Kjarsgaard, B. A. (2008). Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database. The Canadian Mineralogist., 46(4), 741-752. doi 10.3749/canmin.46.4.741
Wood, D. A. (1979) Avariably veined sub-oceanic upper mantle genetic significance for mid-ocean ridge basalts from geochemical evidence. Geology., v. 7, pp. 499-503. DOI: 10.1130/0091-7613(1979)7<499:AVVSUM>2.0.CO;2
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)