K. Abinaya S.K. Rajkishore A. Lakshmanan R. Anandham P. Dhananchezhiyan M. Praghadeesh


Coconut shell is one of the major agro-by products vis-a-vis agro-waste generated by coconut processing units. At present, Coconut shells are largely utilized as feed material for thermal power conversion by various allied industrial sectors, which is a highly energy inefficient and ecologically unfriendly process. The present study aimed to generate activated carbon dots/ carbon nanomaterials with a wide range of potential applications through a relatively less energy dependant hydrothermal carbonization process. Hydrothermal carbonization is a one-step, simple, low cost and environmental friendly approach to obtain carbon dots. The findings demonstrate that coconut shells when subjected to hydrothermal carbonization process at 250C for 6 h produced uniform-sized, stable, negatively charged and amorphous forms of carbon dots. Characterization of carbon dots using
High-Resolution Transmission Electron Microscopy (HR-TEM), Scanning Electron Microscopy (SEM), Selected Area Electron Diffraction (SAED), X- ray Diffractometer (XRD), UV- Visible Spectroscopy, Particle Size Analyzer (PSA), Brunauer–Emmett-Teller (BET) Analyzer, Elemental Dispersive X-ray (EDX) analyzer and Fourier Transform Infrared Spectroscopy (FTIR) had conclusively confirmed the versatility of the carbon dots generation process and were able to achieve stable 2 nm-sized, spherical shaped carbon dots with numerous downstream applications. The study will help the conversion of agro-waste coconut shells into useful bio-based fluorescent carbon dots.




Coconut shell, Hydrochar, Hydrothermal carbonization, Carbon dots

Chunduri, L. A. A., Kurdekar, A., Patnaik, S., Aditha, S., Prathibha, C. & Kamisetti, V. (2017). Single step synthesis of carbon quantum dots from coconut shell: evaluation for antioxidant efficacy and hemotoxicity. J. Mater. Sci. Appl., 3(6), 83-93. https://doi.org/1 0.1166/mat.2016.1289
Arena, N., Lee, J. & Clift, R. (2016). Life Cycle Assessment of activated carbon production from coconut shells. Journal of Cleaner Production, 125, 68-77. https://doi.org/10.1016/j.jclepro.2016.03.073
Ayrilmis, N., Jarusombuti, S., Fueangvivat, V., Bauchongkol, P. & White, R. H. (2011). Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fibers and polymers, 12(7), 919-926. https://doi.org/10.1007/s12221-011-0919-1
Cejka, J. & Mintova, S. (2007). Perspectives of micro/mesoporous composites in catalysis. Catalysis Reviews, 49(4), 457-509.
Chen, K., Qing, W., Hu, W., Lu, M., Wang, Y. & Liu, X. (2019). On-off-on fluorescent carbon dots from waste tea: Their properties, antioxidant and selective detection of CrO42−, Fe3+, ascorbic acid and L-cysteine in real samples. Spectrochimica acta Part A: Molecular and Biomolecular Spectroscopy, 213, 228-234. DOI: 10.1016/j.saa.2019.01.066
Crista, D., El Mragui, A., Algarra, M., Esteves da Silva, J. C., Luque, R. & Pinto da Silva, L. (2020). Turning spent coffee grounds into sustainable precursors for the fabrication of carbon dots. Nanomaterials, 10(6), 1209. DOI: 10.3390/nano10061209
Dias, C., Vasimalai, N., P Sárria, M., Pinheiro, I., Vilas-Boas, V., Peixoto, J. & Espiña, B. (2019). Biocompatibility and bioimaging potential of fruit-based carbon dots. Nanomaterials, 9(2), 199. DOI: 10.3390/nano90 20 199
Funke, A. & Ziegler, F. (2010). Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining, 4(2), 160-177. https://doi.org/1 0.1002/bbb.198
Gharat, P. M., Pal, H. & Choudhury, S. D. (2019). Photophysics and luminescence quenching of carbon dots derived from lemon juice and glycerol. Spectrochimica acta Part A: Molecular and Biomolecular Spectroscopy, 209, 14-21. DOI: 10.1016/j.saa.20 18.10.029
Horst, F. H., da Silva Rodrigues, C. V., Carvalho, P. H. P. R., Leite, A. M., Azevedo, R. B., Neto, B. A. & Rodrigues, M. O. (2021). From cow manure to bioactive carbon dots: a light-up probe for bioimaging investigations, glucose detection and potential immunotherapy agent for melanoma skin cancer. RSC Advances, 11(11), 6346-6352. https://doi.org/10.1039/D0RA10859F
Hu, Y., Zhang, L., Li, X., Liu, R., Lin, L. & Zhao, S. (2017). Green preparation of S and N Co-doped carbon dots from water chestnut and onion as well as their use as an off–on fluorescent probe for the quantification and imaging of coenzyme A. ACS Sustainable Chemistry & Engineering, 5(6), 4992-5000. https://doi.org/10.1021/acssuschem eng.7b00393
Jain, A., Balasubramanian, R. & Srinivasan, M. P. (2016). Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chemical Engineering Journal, 283, 789-805. https://doi.org/10.1016/j.cej.2015.0 8.014
Kang, X., Wu, L., Xu, J., Liu, D., Song, Q. & Hu, Y. (2020, July). Preparation and photoelectrochemical properties of porous silicon/ carbon dots composites. In IOP Conference Series: Materials Science and Engineering (Vol. 892, No. 1, p. 012025). IOP Publishing.
Kasibabu, B. S. B., D’souza, S. L., Jha, S. & Kailasa, S. K. (2015). Imaging of bacterial and fungal cells using fluorescent carbon dots prepared from carica papaya juice. Journal of fluorescence, 25(4), 803-810. DOI: 10.1007/s10895-015-1595-0
Lin, F., Li, C., Dong, L., Fu, D. & Chen, Z. (2017). Imaging biofilm-encased microorganisms using carbon dots derived from L. plantarum. Nanoscale, 9(26), 9056-9064.
Lin, Y., Chen, Z., Yu, C. & Zhong, W. (2019). Heteroatom-doped sheet-like and hierarchical porous carbon based on natural biomass small molecule peach gum for high-performance supercapacitors. ACS Sustainable Chemistry & Engineering, 7(3), 3389-3403.
Liu, Z., Zhang, F. S. & Wu, J. 2010). Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel, 89(2), 510-514.
Mehta, V. N., Jha, S. & Kailasa, S. K. (2014). One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Materials Science and Engineering: C, 38, 20-27.
Nguyen, T. N., Le, P. A. & Phung, V. B. T. (2020). Facile green synthesis of carbon quantum dots and biomass-derived activated carbon from banana peels: synthesis and investigation. Biomass Conversion and Biorefinery, 1-10.
Ramanan, V., Thiyagarajan, S. K., Raji, K., Suresh, R., Sekar, R. & Ramamurthy, P. (2016). Outright green synthesis of fluorescent carbon dots from eutrophic algal blooms for in vitro imaging. ACS Sustainable Chemistry & Engineering, 4(9), 4724-4731.
Sahu, S., Behera, B., Maiti, T. K. & Mohapatra, S. (2012). Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chemical Communications, 48(70), 8835-8837.
Shaikh, A. F., Tamboli, M. S., Patil, R. H., Bhan, A., Ambekar, J. D. & Kale, B. B. (2019). Bioinspired carbon quantum dots: an antibiofilm agents. Journal of Nanoscience and Nanotechnology, 19(4), 2339-2345.
Sharma, N., Das, G. S. & Yun, K. (2020). Green synthesis of multipurpose carbon quantum dots from red cabbage and estimation of their antioxidant potential and bio-labeling activity. Applied Microbiology and Biotechnology, 104(16), 7187-7200.
Sharma, V., Singh, S. K. & Mobin, S. M. (2019). Bioinspired carbon dots: from rose petals to tunable emissive nanodots. Nanoscale Advances, 1(4), 1290-1296.
Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). Principles of instrumental analysis. Cengage learning.
Titus, D., Samuel, E. J. J. & Roopan, S. M. (2019). Nanoparticle characterization techniques In Green synthesis, characterization and applications of nanoparticles, Elsevier, (pp. 303-319).
Wu, Z. L., Zhang, P., Gao, M. X., Liu, C. F., Wang, W., Leng, F. & Huang, C. Z. (2013). One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk–natural proteins. Journal of Materials Chemistry B, 1(22), 2868-2873.
Yao, Y. Y., Gedda, G., Girma, W. M., Yen, C. L., Ling, Y. C. & Chang, J. Y. (2017). Magnetofluorescent carbon dots derived from crab shell for targeted dual-modality bioimaging and drug delivery. ACS applied materials & interfaces, 9(16), 13887-13899.
Yuan, M., Zhong, R., Gao, H., Li, W., Yun, X., Liu, J. & Zhang, F. (2015). One-step, green, and economic synthesis of water-soluble photoluminescent carbon dots by hydrothermal treatment of wheat straw, and their bio-applications in labeling, imaging, and sensing. Applied Surface Science, 355, 1136-1144.
Zhang, J., Yuan, Y., Liang, G. & Yu, S. H. (2015). Scale‐up synthesis of fragrant nitrogen‐doped carbon dots from bee pollens for bioimaging and catalysis. Advanced Science, 2(4), 1500002.
Zhi, B., Gallagher, M. J., Frank, B. P., Lyons, T. Y., Qiu, T. A., Da, J. & Haynes, C. L. (2018). Investigation of phosphorous doping effects on polymeric carbon dots: fluorescence, photostability, and environmental impact. Carbon, 129, 438-449.
Zhou, X. & Thompson, G. E. (2009). Electron and Photon Based Spatially Resolved Techniques In Shreir's Corrosion. Elsevier BV.
Research Articles

How to Cite

Synthesis and characterization of carbon dots from coconut shell by optimizing the hydrothermal carbonization process . (2021). Journal of Applied and Natural Science, 13(4), 1151-1157. https://doi.org/10.31018/jans.v13i4.2916