Article Main

Shrayosee Ghosh Shri Kant Tripathi

Abstract

The present study aims to understand microbial succession and dynamics of dry matter, carbon and nitrogen during the decomposition of leaf litters of Tephrosia candida (Roxb.) DC. and Oryza sativa L. in two fallow lands (FL) of 3 years (FL-3) and 8 years (FL-8) following shifting cultivation in Mizoram. A total of 64 microorganisms were isolated from two leaf litters by serial dilution method, out of which 13 microbes were identified as decomposers as they exhibited a positive response towards the enzyme activity. Among these 13 microorganisms, 4 (SKT 02, SKT 05, SKT 09 and SKT 020) were bacteria (Streptobacillus sp. and Bacillus sp.), 5 (SKT 033, SKT 034, SKT 035, SKT 040 and SKT045) were fungi (Microsporum sp., Rhizopus sp. and Aspergillus sp.) and 4 (SKT 030, SKT 052, SKT 053 and SKT 060) were actinomycetes (Streptomycetes sp.). T. candida leaf litter possessed low initial Carbon/Nitrogen (8.77) and Lignin/Nitrogen ratio (2.29) and considered a high-quality resource exhibiting higher decomposition rate.   Mass loss of carbon and nitrogen (~ 40-80%) was maximum during the initial two months, which slowed down in the later period of decomposition. It was concluded that the number of bacteria, fungi and actinomycetes regulate organic matter and nutrient dynamics in the soil through various enzymatic actions on high- and low-quality litters. The combination of O. sativa and T. candida litter is recommended to manage soil fertility in shifting cultivation of Mizoram,Northeast India.

Article Details

Article Details

Keywords

Carbon- Nitrogen dynamics, Decay rate, Decomposition, Fertility, Microorganisms

References
Abbott, L. K., & Murphy, D. V. (Eds.) (2003). Soil biological fertility: a key to sustainable land use in agriculture. Springer Science & Business Media. http://www.agric.ns w.gov.au/reader/soil-biology.
Anonymous (2020). Statistical Handbook, Mizoram 2010. Government of Mizoram, Mizoram, Aizawl,186.
Babiker, B. M., Ahmed, M. A. E., & Ibrahim, H. M. (2017). Isolation & identification of catalase producing Bacillus spp: A comparative study. Int. J. Adv. Res., 4, 1206-1211.
Bani, A., Pioli, S., Ventura, M., Panzacchi, P., Borruso, L., Tognetti, R., Tonon, G., & Brusetti, L. (2018). The role of microbial community in the decomposition of leaf litter and deadwood. Applied Soil Ecology, 126, 75-84. https://doi.org/10.1016/j.apsoil.2018.02.017
Bauder, J. (2000). Cereal crop residues and plant nutrients. Montana State University Communications Services.
Bergey, D.H. & Holt, J.G. (2000). Bergey's manual of determinative bacteriology. Lippincott Williams and Wilkins, Philadelphia.
Cornwell, W.K., Cornelissen, J.H., Amatangelo, K., Dorrepaal, E., Eviner, V.T., Godoy, O., Hobbie, S.E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N. & Quested, H.M. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11(10), 1065-1071.
Debi, C., & Parkash, V. (2017). Comparative Soil Nutrient Status and Microbiota Associated in the Rhizosphere of Oroxylum indicum growing in Different Natural Habitat in North East India. International Journal of Current Microbiology and Applied Sciences, 6(12), 2627-2640. https://doi.org/10.20546/ijcmas.2017.612.304
Eida, M. F., Nagaoka, T., Wasaki, J., & Kouno, K. (2009). Isolation and characterization of cellulose-decomposing bacteria inhabiting sawdust and coffee residue composts. Microbes and Environments, 1202170356-1202170 356. doi:10.1264/jsme2.ME11299
Eisenberg, T., Nicklas, W., Mauder, N., Rau, J., Contzen, M., Semmler, T., Hofmann, N., Aledelbi, K. & Ewers, C. (2015). Phenotypic and genotypic characteristics of members of the genus Streptobacillus. PLoS One, 10(8), e0134312.
Fosu, M., Kühne, R. F., & Vlek, P. L. G. (2007). Mineralization and microbial biomass dynamics during decomposition of four leguminous residues. Journal of Biological Sciences, 7(4), 632-637.
Ghorbani-Nasrabadi, R., Greiner, R., Alikhani, H. A., Hamedi, J., & Yakhchali, B. (2013). Distribution of actinomycetes in different soil ecosystems and effect of media composition on extracellular phosphatase activity. Journal of Soil Science and Plant Nutrition, 13(1), 223-236. http://dx.doi.org/10.4067/S0718-95162013005000020
Gilman, J. (1957). A manual of soil fungi. Soil Science, 84(2), 183.
Giudice, M. C., Reis-Menezes, A. A., Rittner, G. M. G., Mota, A. J., & Gambale, W. (2012). Isolation of Microsporum gypseum in soil samples from different geographical regions of Brazil, evaluation of the extracellular proteolytic enzymes activities (keratinase and elastase) and molecular sequencing of selected strains. Brazilian Journal of Microbiology, 43, 895-902.  https://doi.org/10.1590/S1517-83822012000300007" \t "_blank" https://doi.or g/1 0.1590/S1517-83822012000300007
Grogan, P., Lalnunmawia, F., & Tripathi, S.K. (2012). Shifting cultivation in steeply sloped regions: A review of management options and research priorities for Mizoram state, Northeast India. Agrofor. Syst, 84, 163-177.
Hauchhum, R., & Tripathi, S. K. (2019). Carbon and nitrogen differences in rhizosphere soil of annual plants in abandoned lands following shifting agriculture in northeast India. Nutrient Cycling in Agroecosystems, 113(2), 157-166.
Herzog, C., Hartmann, M., Frey, B., Stierli, B., Rumpel, C., Buchmann, N., & Brunner, I. (2019). Microbial succession on decomposing root litter in a drought-prone Scots pine forest. The ISME journal, 13(9), 2346-2362.
Hobbie, S. E., Eddy, W. C., Buyarski, C. R., Adair, E. C., Ogdahl, M. L., & Weisenhorn, P. (2012). Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecological Monographs, 82(3), 389-405. https://doi.org/10.1890/11-1600.1
Hoorman, J. J. (2010). Understanding soil microbes and nutrient recycling. Agriculture and natural resources. SAG, Ohio State University, USA.
Hoorman, J. J. (2011). The role of soil fungus. Factsheet-Agriculture and natural resources. The Ohio State University Extension.
Jackson, M. L. (1973). Soil Chemical Analysis. Prentice Hall of India Ltd, New Delhi.
Kumar, B. S., Zothansanga, Senbagam, D., Kumar, N. S. & Gurusubramanian, G. (2015). Practical Microbiology A Laboratory Manual. Panima Publishing Corporation, India.
Lalnunzira, C. & Tripathi, S.K. (2018). Leaf and root production decomposition and carbon and nitrogen fluxes during stand development in tropical moist forests, Northeast India. Soil Research, 56(3), 306-317.  https://doi.or g/10.1071/SR16265
Li, Y. B., Li, Q., Yang, J. J., Lü, X. T., Liang, W. J., Han, X. G., & Martijn Bezemer, T. (2017). Home-field advantages of litter decomposition increase with increasing N deposition rates: a litter and soil perspective. Functional Ecology, 31(9), 1792-1801. https://doi.org/10.1111/1365-2435.12863
Manpoong, C., De Mandal, S., Bangaruswamy, D. K., Perumal, R. C., Benny, J., Beena, P. S., & Tripathi, S. K. (2020). Linking rhizosphere soil biochemical and microbial community characteristics across different land use systems in mountainous region in Northeast India. Meta Gene, 23, 100625.
Martin, J. P. (1950). Use of acid, rose bengal, and streptomycin in the plate method for estimating soil fungi. Soil Science, 69(3), 215-232.
Mason, C. (1977). Decomposition. The Camelot Press Ltd, Southampton.
McBrayer, J. F., & CRoMACK Jr, K. E. R. M. I. T. (1980). Effect of snow-pack on oak-litter breakdown and nutrient release in a Minnesota forestº.
Momin, M. D., & Tripathi, S. K. (2019). Actinomycetes from shifting cultivation (jhum) of Mizoram, Northeast India. Environment and Ecology, 37(3B), 1081-1085.
Momin, M. D., Singh, N. S., Kumar, A., & Tripathi, S. K. (2021). Structural and functional characterization of rhizosphere actinomycetes of major crop plants under shifting cultivation practice in Northeast India. Vegetos, 1-9.
Munthali, M. G., Gachene, C. K. K., Karanja, N. K., & Sileshi, G. W. (2013, October). Decomposition rates and nutrient release patterns of Tephrosia vogelii and Tephrosia candida residues in Malawi. In Joint Proceedings of the 27th Soil Science Society of East Africa and the 6th African Soil Science Society Conference.
Nguyen, T. S., & Thai, P. (1993). Tephrosia candida-a soil ameliorator plant in Vietnam. Contour (Jakarta), 5(1), 27-28.
Olson, J. S. (1963). Energy storage and the balance of producers and decomposers in ecological systems.  Ecology, 44(2), 322-331.
Pant, G., Prakash, A., Pavani, J. V. P., Bera, S., Deviram, G. V. N. S., Kumar, A., Panchpuri, M. & Prasuna, R. G. (2015). Production, optimization and partial purification of protease from Bacillus subtilis. Journal of Taibah University for Science, 9(1), 50-55. https://doi.org/10.1016/j.jtusc i.2014.04.010
Pérez, J., Munoz-Dorado, J., De la Rubia, T. D. L. R., & Martinez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology, 5(2), 53-63.
Quideau, S. A., Graham, R. C., Oh, S. W., Hendrix, P. F., & Wasylishen, R. E. (2005). Leaf litter decomposition in a chaparral ecosystem, Southern California. Soil Biology and Biochemistry, 37(11), 1988-1998.
Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C., & Moënne-Loccoz, Y. (2009). The rhizosphere: a playground and battlefield for soil borne pathogens and beneficial microorganisms. Plant and soil, 321(1), 341-361.
Rajagopal, S. V., Kumar, K. S., & Sankar, A. U. (2007). Production and characterisation of cellulase by Streptobacillus species-APS -8. Journal of Pure and Applied Microbiology, 1(2), 231-236.
Scarascia-Mugnozza, G., De Angelis, P., Sabatti, M., Calfapietra, C., Ceulemans, R., Peressotti, A., & Miglietta, F. (2000). A FACE experiment on short rotation, intensive poplar plantation: objective and experimental set up of POPFACE. Terrestrial Ecosystem Research in Europe: Successes, Challenges and Policy. Office for Official Publications of the European Communities, Luxembourg, 136-140.
Sethi, S., Datta, A., Gupta, B. L., & Gupta, S. (2013). Optimization of cellulase production from bacteria isolated from soil. International Scholarly Research Notices, 2013. http://dx.doi.org/10.5402/2013/985685.
Singh, N. S., & Tripathi, S. K. (2020). Litter mass loss rate changes as function of soil microbial diversity and litter chemical quality in tropical and sub-tropical forest of Mizoram: A microcosm study. Indian Journal of Ecology, 47(3), 792-798.
Swift, M. J., Heal, O. W., Anderson, J. M., & Anderson, J. M. (1979). Decomposition in terrestrial ecosystems, 5. Univ of California Press.
Taylor, B. R., Parkinson, D., & Parsons, W. F. (1989). Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology, 70(1), 97-104. https://www.jstor.org/stable/1938416.
Tripathi, S. K., & Singh, K. P. (1992a). Abiotic and litter quality control during the decomposition of different plant parts in dry tropical bamboo savanna in India. Pedobiologia (Jena), 36(4), 241-256.
Tripathi, S. K., & Singh, K. P. (1992b). Nutrient immobilization and release patterns during plant decomposition in a dry tropical bamboo savanna, India. Biology and Fertility of Soils, 14(3), 191-199.
Van Soest, P. J., & Wine, R. H. (1968). Determination of lignin and cellulose in acid-detergent fiber with permanganate. Journal of the association of official analytical chemists, 51(4), 780-785.  https://doi.org/10.1093/jaoac/5 1.4. 780
Villegas-Pangga, G., Blair, G., & Lefroy, R. (2000). Measurement of decomposition and associated nutrient release from straw (Oryza sativa L.) of different rice varieties using a perfusion system. Plant and Soil, 223(1), 1-11.
Wang, W. J., Smith, C. J., & Chen, D. (2004). Predicting soil nitrogen mineralization dynamics with a modified double exponential model. Soil Science Society of America Journal, 68(4), 1256-1265. https://doi.org/10.2136/sssaj2 004.1256
Wapongnungsang, H. R., & Tripathi, S. K. (2017). Litter decomposition Vis-a-Vis carbon and nitrogen dynamics of Tephrosia candida components in different fallow periods following shifting cultivation in Mizoram. Indian Journal of Ecology, 44(4), 791-796.
Section
Research Articles

How to Cite

Microbial succession and changes in carbon and nitrogen during decomposition of leaf litters of Tephrosia candida (Roxb.) DC. and Oryza sativa L. under shifting cultivation in Mizoram, northeast India. (2021). Journal of Applied and Natural Science, 13(3), 1032-1040. https://doi.org/10.31018/jans.v13i3.2855