##plugins.themes.bootstrap3.article.main##

Kalpana Singh Satyendra Kumar Kashyap Vandana Garg

Abstract

Danio rerio, commonly known as zebrafish, is a freshwater aquarium fish and is native to parts of South Asia. It is considered an important organism for analyzing the noxious effects of toxicants and pollutants of the environment. In terms of the molecular signaling pathway, molecular properties, organ functions and structures, and neurogenesis, zebrafish are similar to certain other higher-order vertebrates. The 3Rs, refinement,reduction, and replacement in researchhavegradually evolved with time. The accumulation of toxicants in the environment and the human health conditions from exposure to toxicants present in the environment is a serious concern, and zebrafish serves as an excellent model to research such effects. The three Rs are met by zebrafish, larvae can also be used to discover harmful medication compounds, permitting safer compounds to be explored in model organisms and it could also be used to substitute certain toxicological testing.Also, because embryos are fertilized outside and are visible during the initial days of life, the early larval model of zebrafish enables flexibility to animal research study, subsequently reducing the number of animals employed in experiments.For various experimentation studies, the larva of the zebrafish is proved to be a useful model for the system.Thus, being a good test system, zebrafish are used in environmental health and safety studies.This review focuses on the toxicological studiesin zebrafish and outlines the toxicological studies done on zebrafish with arsenic and 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) as well as microplastic toxicity.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Zebrafish, Arsenic, 2,3,7,8-Tetrachlorodibenzo-p-dioxin, Microplastics

References
Arunachalam, M., Raja, M., Vijayakumar, C., Malaiammal, P., & Mayden, R. L. (2013). Natural history of zebrafish (Danio rerio) in India. Zebrafish, 10(1). DOI: 10.1089/zeb. 2012.0803
Baker, T. R., King-Heiden, T. C., Peterson, R. E. & Heideman, W. (2014). Dioxin induction of transgenerational inheritance of disease in zebrafish. Mol Cell Endocrinol, 398(1-2), 36-41. https://doi.org/10.1016/j.mce.2014.08.01 1
Baker, T. R., Peterson, R. E. &Heideman, W.(2014). Using zebrafish as a model system for studying the transgenerational effects of dioxin. Toxicol. Sci., 138(2), 403-411. DOI: 10.1093/toxsci/kfu006
Bambino, K. & Chu, J.(2017). Zebrafish in toxicology and environmental health. Curr. Top. Dev. Biol., 124, 331-367. DOI: 10.1016/bs.ctdb.2016.10.007
Bellinger, D. C. (2016). Lead contamination in flint--An abject failure to protect public health. N. Engl. J. Med., 374(12), 1101-1103. DOI: 10.1056/NEJMp1601013
Bhagat, J., Zang, L., Nishimura, N. & Shimada, Y. (2020). Zebrafish: An emerging model to study microplastic and nano plastic toxicity. Science of The Total Environment, 728.DOI: 10.1016/j.scitotenv.2020.138707
Brannen, K. C., Panzica-Kelly, J. M., Danberry, T. L. & Augustine-Rauch, K. A.(2010). Development of a zebrafish embryo teratogenicity assay and quantitative prediction model. Birth Defects Res. B Dev. Reprod. Toxicol., 89(1), 66-77. DOI: 10.1002/bdrb.20223
Carney, S. A., Chen, J., Burns, C. G., Xiong, K. M., Peterson, R. E. & Heideman, W.(2006). Aryl hydrocarbon receptor activation produces heart-specific transcriptional and toxic responses in developing zebrafish. Mol Pharmacol. 70(2), 549-561.https://doi.org/10.1002/bdrb.20223
Carney, S. A., Prasch, A. L., Heideman, W. & Peterson, R. E. (2006). Understanding dioxin developmental toxicity using the zebrafish model. Birth Defects Res. A Clin. Mol. Teratol., 76(1), 7-18. DOI: 10.1002/bdra.20216
Carvan, M. J. 3rd, Dalton, T. P., Stuart, G. W. &Nebert, D. W. (2000). Transgenic zebrafish as sentinels for aquatic pollution. Ann. N. Y. Acad. Sci., 919, 133-147.DOI: 10.111 1/j.1749-6632.2000.tb06875.x
Cassar, S.,Adatto, I., Freeman, J. L., Gamse, J. T., Iturria, I., Lawrence, C., Muriana, A., Peterson, R. T., Cruchten, V. S. & Zon, L. I.(2020). Use of zebrafish in drug discovery toxicology. Chem. Res. Toxicol., 33(1), 95-118.https://doi.org/10.1021/acs.chemrestox.9b00335
Cheng, H., Feng, Y., Duan, Z., Duan, X., Zhao, S., Wang, Y., Gong, Z. & Wang, L. (2021). Toxicities of microplastic fibers and granules on the development of zebrafish embryos and their combined effects with cadmium. Chemosphere, 269. https://doi.org/10.1016/j.chemosphere.202 0.128677
Davis, M. A., Mackenzie, T. A., Cottingham, K. L., Gilbert-Diamond, D., Punshon, T. & Karagas, M. R. (2012). Rice consumption and urinary arsenic concentrations in U.S. children. Environ. Health Perspect., 120(10), 1418-1424. DOI: 10.1289/ehp.1205014
Engeszer, R. E., Patterson, L. B., Rao, A. A. & Parichy, K. D.M. (2007). Zebrafish in the wild: A review of natural history and new notes from the field.  Zebrafish, 4 (1), 21- 39.  doi:10.1089/zeb.2006.9997.
Gamse, J. T. & Gorelick, D. A. (2016). Mixtures, metabolites, and mechanisms: Understanding toxicology using zebrafish. Zebrafish, 13(5), 377-378. DOI: 10.1089/zeb.2016.1370
Goldstone, J. V., McArthur, A. G., Kubota, A., Zanette, J., Parente, T., Jönsson, M. E., Nelson, D. R. & Stegeman, J. J.(2010). Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish. BMC Genomics, 11, 643.
Gustafson, A. L., Stedman, D. B., Ball, J., Hillegass, J. M., Flood, A., Zhang, C. X., Panzica-Kelly, J., Cao, J., Coburn, A., Enright, B. P., Tornesi, M. B., Hetheridge, M., & Augustine-Rauch, K. A. (2012). Inter-laboratory assessment of a harmonized zebrafish developmental toxicology assay - progress report on phase I. Reproductive toxicology (Elmsford, N.Y.), 33(2), 155–164. https://doi.org/10.1016/j.reprotox.2011.12.004
Hallauer, J.,Geng, X., Yang, H. C., Shen, J., Tsai, K. J. & Liu, Z. (2016). The effect of chronic arsenic exposure in zebrafish. Zebrafish, 13(5), 405-412. doi: 10.1089/zeb.20 16.1252
Heiden, T. C., Struble, C. A., Rise, M. L., Hessner, M. J., Hutz, R. J. & Carvan, M. J. 3rd.(2008). Molecular targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) within the zebrafish ovary: insights into TCDD-induced endocrine disruption and reproductive toxicity. Reprod. Toxicol., 25(1), 47-57.doi: 10.1016/j.reprotox.2007.07.013
Kabir, T., Anwara S., Mourosia J. T., Hossain, J., Rabbaneb, M. G., Rahmand, M. M., Tahsina, T., Hasane, M. N., Shillf, M. C. & Hosen, M. J. (2020). Arsenic hampered embryonic development: An in vivo study using local Bangladeshi Danio rerio model. Toxicology Reports, 7, 155-161.DOI: 10.1016/j.toxrep.2019.12.009
Kim, K. H., Park, H. J., Kim, J. H., Kim, S., Williams, D. R., Kim, M. K., Jung, Y. D., Teraoka, H., Park, H. C., Choy, H. E., Shin, B. A. & Choi, S. Y.(2013). Cyp1a reporter zebrafish reveals target tissues for dioxin. Aquat.Toxicol., 134-135, 57-65.DOI: 10.1016/j.aquatox.2013.03.010
Kumar, V., Vogelsang, L., Seidel, T.,  Schmidt, R., Weber, M., Reichelt, M., Meyer, A., Clemens, S., Sharma, S. S. & Dietz, K. J.(2019). Plant Cell Environ., 42(2), 574-590.  https://doi.org/10.1111/pce.13441
Lam, S. H., Winata, C. L., Tong, Y., Korzh, S., Lim, W. S., Korzh, V., Spitsbergen, J., Mathavan, S., Miller, L. D., Liu, E. T. & Gong, Z.(2006). Transcriptome kinetics of arsenic-induced adaptive response in zebrafish liver. Physiol Genomics, 27(3), 351-361. DOI: 10.1152/physiolgenomics.00 201.2005
Landrigan, P. J.(2016). Children's environmental health: A brief history. Acad. Pediatr., 16(1), 1-9. DOI: 10.1016/j.ac ap.2015.10.002
Li, C., Li, P., Tan, Y. M., Lam, S. H., Chan, E. C. & Gong, Z. (2016). Metabolomic characterizations of liver injury caused by acute arsenic toxicity in zebrafish. PLoS One, 11(3). https://doi.org/10.1371/journal.pone.0151225
Li, D., Lu, C., Wang, J.,  Hu, W., Cao, Z., Sun, D., Xia, H. & Ma, X.(2009). Developmental mechanisms of arsenite toxicity in zebrafish (Danio rerio) embryos. Aquat. Toxicol., 91(3), 229-237. DOI: 10.1016/j.aquatox.2008.11.007
Mattingly, C. J., McLachlan, J. A. & Toscano, W. A. Jr. (2001). Green fluorescent protein (GFP) as a marker of aryl hydrocarbon receptor (AhR) function in developing zebrfish (Danio rerio). Environ. Health Perspect., 109(8), 845-849.DOI: 10.1289/ehp.01109845
Malafaia, G., de Souza, A. M., Pereira, A. C.Gonçalves, S., da Costa Araújo, A. P., Ribeiro, R. X. & Rocha, T. L.(2020). Developmental toxicity in zebrafish exposed to pristine polyethylene microplastics under static and semi-static systems. Science of The Total Environment, 134867.DOI: 10.1016/j.scitotenv.2019.134867
Mehta, V., Peterson, R. E. &Heideman, W. (2008). 2,3,7,8-Tetrachlorodibenzo-p-dioxin exposure prevents cardiac valve formation in developing zebrafish. Toxicol. Sci., 104(2), 303-311. DOI: 10.1093/toxsci/kfn095
Prasch, A. L., Tanguay, R. L., Mehta, V., Heideman, W. & Peterson, R. E. (2006). Identification of zebrafish ARNT1 homologs: 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity in the developing zebrafish requires ARNT1. Mol Pharmacol.69(3), 776-787.DOI: 10.1124/mol.105.016873
Prasch, A. L., Teraoka, H., Carney, S. A., Dong, W., Hiraga, T., Stegeman, J. J., Heideman, W. & Peterson, R. E.(2003). Aryl hydrocarbon receptor 2 mediates 2,3,7,8-tetrachlorodibenzo-p-dioxin developmental toxicity in zebrafish. Toxicol. Sci., 76(1), 138-150. DOI: 10.1093/tox sci/kfg202
Qiang, L. & Cheng, J. (2021). Exposure to polystyrene microplastics impairs gonads of zebrafish (Danio rerio). Chemosphere, 263, 128161.https://doi.org/10.1016/j.che mosphere.2020.128161
Ragusa, A., Svelato, A., Santacroce, C. Catalano, P., Notarstefano, V., Carnevali, O., Papa, F., Rongioletti, M. C. A., Baiocco, F., Draghi, S., D'Amore, E., Rinaldo, D., Matta, M. &Giorgini E. (2021). Plasticenta: First evidence of microplastics in human placenta. Environment International., 146.
Saad, M., Cavanaugh, K., Verbueken, E., Pype, C., Casteleyn, C., Van Ginneken, C. & Van Cruchten, S.(2016). Xenobiotic metabolism in the zebrafish: a review of the spatiotemporal distribution, modulation and activity of Cytochrome P450 families 1 to 3. J. Toxicol. Sci., 41(1), 1-11.DOI: 10.2131/jts.41.1
Sauve, S.(2014). Time to revisit arsenic regulations: comparing drinking water and rice. BMC Public Health, 14(465).
Seok, S. H., Baek, M. W., Lee, H. Y., Kim, D. J., Na, Y. R., Noh, K. J., Park, S. H., Lee, H. K., Lee, B. H., Ryu, D. Y. & Park, J. H.(2007). Quantitative GFP fluorescence as an indicator of arsenite developmental toxicity in mosaic heat shock protein 70 transgenic zebrafish. Toxicol. Appl. Pharmacol., 225(2), 154-161. DOI: 10.1016/j.taap.2007.07.011
Streisinger, G., Walker, C., Dower, N., Knauber, D. & Singer, F. (1981). Production of clones of homozygous diploid zebra fish (Brachy danio rerio). Nature, 291(5813), 293-296.
Tong, S., Baghurst, P., McMichael, A., Sawyer, M. &Mudge, J. (1996). Lifetime exposure to environmental lead and children's intelligence at 11-13 years: the Port Pirie cohort study. BMJ, 312(7046), 1569-1575.doi: 10.1 136/bmj.312.7046.1569
Umamaheswari, S., Priyadarshinee, S., Bhattacharjee, M., Kadirvelu, K. & Ramesh, M. (2020). Exposure to polystyrene microplastics induced gene modulated biological responses in zebrafish (Danio rerio). Chemosphere, 10.doi: 10.1016/j.chemosphere.2020.128592
Valles, S., Sanchez, H. G., Dipp, V. R., Gozalez, D. H., Banuelos, T. N. O., Fraga, J. G. &Bardullas, U. (2020). Exposure to low doses of inorganic arsenic induces transgenerational changes on behavioral and epigenetic markers in zebrafish (Danio rerio). Toxicol. Appl. Pharmacol., 396. https://doi.org/10.1016/j.taap.2020.115002
Strahle, U., Scholz, S., Geisler, R., Greiner, P., Hollert, H., Rastegar, S., Schumacher, A., Selderslaghs, I., Weiss, C., Witters, H. &Braunbeck, T. (2012). Zebrafish embryos as an alternative to animal experiments--a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod. Toxicol., 33(2),128-32. doi: 10.1016/j.reprotox.2011.06.121.
Wang, W., Cheng, S. & Zhang, D. (2014). Association of inorganic arsenic exposure with liver cancer mortality: A meta-analysis. Environ. Res., 135, 120-125.DOI: 10.1016/j.envres.2014.08.034
White, R. M., Sessa, A., Burke, C., Bowman, T., LeBlanc, J., Ceol, C., Bourque, C., Dovey, M., Goessling, W., Burns, C. E.&Zon, L. I.(2008). Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell,2(2), 183-189. DOI: 10.1016/j.stem.2007.11.002
Xie, Y., Holmgren, S., Andrews, D. M., Wolfe, M. S. (2017) Evaluating the impact of the U.S. National Toxicology Program: A case study on hexavalent chromium. Environ Health Perspect., 125(2),181-188. doi: 10.1289/EHP21
Xu, H., Lam, S. H., Shen, Y. & Gong, Z. (2013). Genome-wide identification of molecular pathways and biomarkers in response to arsenic exposure in zebrafish liver. PLoS One, 8(7).https://doi.org/10.1371/journal.pone.0068737
Xu, H., Li, C., Li, Y., Ng, G. H., Liu, C., Zhang, X. & Gong, Z.(2015). Generation of Tg(cyp1a:gfp) transgenic zebrafish for development of a convenient and sensitive In Vivo Assay for Aryl hydrocarbon receptor activity. Mar Biotechnol (NY), 17(6), 831-840. DOI: 10.1007/s10126-015-9669-1
Yang, L., Kemadjou, J. R., Zinsmeister, C., Bauer, M., Legradi, J., Müller, F., Pankratz, M., Jäkel, J. & Strähle, U.(2007). Transcriptional profiling reveals barcode-like toxicogenomic responses in the zebrafish embryo. Genome Biol, 8(10).DOI: 10.1186/gb-2007-8-10-r227
Zhao, Y., Qin, Z., Huang, Z., Zhiwei, B.,Luo, T. &Jin, Y. (2021). Effects of polyethylene microplastics on the microbiome and metabolism in larval zebrafish. Environmental Pollution, 282. https://doi.org/10.1016/j.envpol.2021.11 70 39
Section
Research Articles

How to Cite

Use of zebrafish (Danio rerio) as a model for research in toxicological studies. (2021). Journal of Applied and Natural Science, 13(3), 846-852. https://doi.org/10.31018/jans.v13i3.2767