K M Meghana D Sayantan


With the increasing pollution in today’s world, importance is being given to solve a problem and do it in a sustainable, eco-friendly manner. Arsenic is a class-1 carcinogen and also causes many other side effects to humans, plants and animals. The utilization of arsenic as wood preservatives, pesticides, or its historical overuse by some military units for rice killing operations has led to the increase in the toxic effects of arsenic like its carcinogenicity, decreased immune response etc. Although conventional methods like coagulation, lime softening, adsorption, membrane technology are effective, they have their disadvantages like additional waste generation, causing increased pollution and are expensive. The better alternative is phytoremediation. Appropriate plants like Brassica juncea, Hydrilla verticilata, Pteris vittata L., Vallisneria natans,  can be chosen based on the method of the remediation like phytoextraction, phytostabilization and phytofiltration or phytovoltalization. This review provides the list of a few plants which can be likely chosen for the purpose of both water and soil remediation. Advancements are occurring in bioremediation studies with the development of transgenic plants like transgenic tobacco, transgenic Arabidopsis thaliana for better phytoremediation.  Understanding the mechanism employed by the plant for its uptake/detoxification can aid in the enhancement of the process of remediation with the external supply of phosphorus. Along with this, the proper and safe disposal of plants is crucial for the remediation process. In addition, awareness of this solution to the general public is to be made for its effectiveness.




Arsenate [As(V)], Arsenite [As (III)], Contamination, Phytoremediation, Toxicity

1. Abbas, G., Murtaza, B., Bibi, I., Shahid, M., Niazi, N. K., Khan, M. I., Amjad, M., Hussain, M., & Natasha. (2018). Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. International Journal of Environmental Research and Public Health, 15(1). https://doi.org/10.3390/ijerph15010059
2. Abdulsalam, S., Bugaje, I. M., Adefila, S. S., & Ibrahim, S. (2011). Comparison of biostimulation and bioaugmentation for remediation of soil contaminated with spent motor oil. International Journal of Environmental Science and Technology, 8(1), 187–194. https://doi.org/10.1007/BF03326208
3. Abedin, M. J., Feldmann, J., & Meharg, A. A. (2002). Uptake kinetics of arsenic species in rice plants. Plant Physiology, 128(3), 1120–1128. https://doi.org/10.1104/pp.010733
4. Ajayi, T. O., & Ogunbayio, A. O. (2012). Achieving Environmental Sustainability in Wastewater Treatment by Phytoremediation with Water Hyacinth (Eichhornia Crassipes). Journal of Sustainable Development, 5(7), 80–90. https://doi.org/10.5539/jsd.v5n7p80
5. Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals-Concepts and applications. Chemosphere, 91(7), 869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075
6. Ali, I., Khan, T. A., & Asim, M. (2011). Removal of arsenic from water by electrocoagulation and electrodialysis techniques. Separation and Purification Reviews, 40(1), 25–42. https://doi.org/10.1080/15422119.2011.542738
7. Alvarado, S., Guédez, M., Lué-merú, M. P., Nelson, G., Alvaro, A., Jesús, A. C., & Gyula, Z. (2008). Bioresource Technology Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth ( Eichhornia crassipes ) and Lesser Duckweed ( Lemna minor ). Bioresource Technology, 99(17), 8436–8440. https://doi.org/10.1016/j.biortech.2008.02.051
8. Anawar, H. M., Garcia-Sanchez, A., Tari Kul Alam, M., & Majibur Rahman, M. (2008). Phytofiltration of water polluted with arsenic and heavy metals. International Journal of Environment and Pollution, 33(2–3), 292–312. https://doi.org/10.1504/IJEP.2008.019400
9. Bencko, V., & Foong, F. Y. L. (2017). The history of arsenical pesticides and health risks related to the use of Agent Blue. Annals of Agricultural and Environmental Medicine, 24(2), 312–316. https://doi.org/10.26444/aaem/74715
10. Bhargava, A., Carmona, F. F., Bhargava, M., & Srivastava, S. (2012). Approaches for enhanced phytoextraction of heavy metals. Journal of Environmental Management, 105, 103–120. https://doi.org/10.1016/j.jenvman.2012.04.002
11. Bolan, N. S., Park, J. H., Robinson, B., Naidu, R., & Huh, K. Y. (2011). Phytostabilization. A green approach to contaminant containment. In Advances in Agronomy (Vol. 112). Academic Press. https://doi.org/10.1016/B978-0-12-385538-1.00004-4
12. Brown, C. J., Eaton, R. A., & Thorp, C. H. (2001). Effects of Chromated Copper Arsenate (CCA) wood preservative on early fouling community formation. Marine Pollution Bulletin, 42(11), 1103–1113. https://doi.org/10.1016/S0025-326X(01)00095-9
13. Carbonell-Barrachina, A. A., Jugsujinda, A., Burlo, F., Delaune, R. D., & Patrick, W. H. (2000). Arsenic chemistry in municipal sewage sludge as affected by redox potential and pH. Water Research, 34(1), 216–224. https://doi.org/10.1016/S0043-1354(99)00127-X
14. Chen, G., Liu, X., Brookes, P. C., & Xu, J. (2015). Opportunities for Phytoremediation and Bioindication of Arsenic Contaminated Water Using a Submerged Aquatic Plant?: Vallisneria natans ( lour .) Hara . International Journal of Phytoremediation, 17, 1–6. https://doi.org/10.1080/15226514.2014.883496
15. Choong, T. S. Y., Chuah, T. G., Robiah, Y., Gregory Koay, F. L., & Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination, 217(1–3), 139–166. https://doi.org/10.1016/j.desal.2007.01.015
16. Chou, C. H. S. J., & De Rosa, C. T. (2003). Case studies - Arsenic. International Journal of Hygiene and Environmental Health, 206(4–5), 381–386. https://doi.org/10.1078/1438-4639-00234
17. Corroto, C., Iriel, A., Cirelli, A. F., & Carrera, A. L. P. (2019). Constructed wetlands as an alternative for arsenic removal from reverse osmosis effluent. Science of the Total Environment, 691, 1242–1250. https://doi.org/10.1016/j.scitotenv.2019.07.234
18. D’Ippoliti, D., Santelli, E., De Sario, M., Scortichini, M., Davoli, M., & Michelozzi, P. (2015). Arsenic in drinking water and mortality for cancer and chronic diseases in Central Italy, 1990-2010. PLoS ONE, 10(9). https://doi.org/10.1371/journal.pone.0138182
19. Das, N. K., & Sengupta, S. R. (2008). Arsenicosis?: Diagnosis and treatment. Indian Journal of Dermatology, Venereology and Leprology, 74(6), 571–581.
20. David E. Salt, Michael Blaylock, Nanda P.B.A. Kumar, Viatcheslav Dushenkov, I. C. & I. R. (1995). Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using Plants. Nature Biotechnology, 13, 468–474. https://doi.org/https://doi.org/10.1038/nbt0595-468
21. Dushenkov, V., Nanda Kumar, P. B. A., Motto, H., & Raskin, I. (1995). Rhizofiltration: The Use of Plants To Remove Heavy Metals from Aqueous Streams. Environmental Science and Technology, 29(5), 1239–1245. https://doi.org/10.1021/es00005a015
22. Edmonds, J. S., & Francesconi, K. A. (1988). The origin of arsenobetaine in marine animals. Applied Organometallic Chemistry, 2(4), 297–302. https://doi.org/10.1002/aoc.590020404
23. Elshamy, M. M., Heikal, Y. M., & Bonanomi, G. (2019). Phytoremediation efficiency of Portulaca oleracea L. naturally growing in some industrial sites, Dakahlia District, Egypt. Chemosphere, 225, 678–687. https://doi.org/10.1016/j.chemosphere.2019.03.099
24. Favas, P. J. C., Pratas, J., & Prasad, M. N. V. (2012). Accumulation of arsenic by aquatic plants in large-scale field conditions?: Opportunities for phytoremediation and bioindication. Science of the Total Environment, 433, 390–397. https://doi.org/10.1016/j.scitotenv.2012.06.091
25. Fayiga, A. O., Ma, L. Q., Cao, X., & Rathinasabapathi, B. (2004). Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L. Environmental Pollution, 132(2), 289–296. https://doi.org/10.1016/j.envpol.2004.04.020
26. Fisher, D. J., Yonkos, L. T., & Staver, K. W. (2015). Environmental concerns of roxarsone in broiler poultry feed and litter in Maryland, USA. Environmental Science and Technology, 49(4), 1999–2012. https://doi.org/10.1021/es504520w
27. Francesconi, K., Visoottiviseth, P., Sridokchan, W., & Goessler, W. (2002). Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: A potential phytoremediator of arsenic-contaminated soils. Science of the Total Environment, 284(1–3), 27–35. https://doi.org/10.1016/S0048-9697(01)00854-3
28. Garelick, H., Jones, H., Dybowska, A., & Valsami-Jones, E. (2008). Arsenic pollution sources. Reviews of Environmental Contamination and Toxicology, 197, 17–60. https://doi.org/10.1007/978-0-387-79284-2_2
29. Garg, N., & Singla, P. (2011). Arsenic toxicity in crop plants: Physiological effects and tolerance mechanisms. Environmental Chemistry Letters, 9(3), 303–321. https://doi.org/10.1007/s10311-011-0313-7
30. Ghosh, M., & Singh, S. P. (2005). Asian Journal on Energy and Environment A Review on Phytoremediation of Heavy Metals and Utilization of It’s by Products. As. J. Energy Env, 6(04), 214–231. www.asian-energy-journal.info
31. Gong, X., Huang, D., Liu, Y., Zeng, G., Wang, R., Wei, J., Huang, C., Xu, P., Wan, J., & Zhang, C. (2018). Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption. Bioresource Technology, 253, 64–71. https://doi.org/10.1016/j.biortech.2018.01.018
32. Greenleaf, J. E., Lin, J. C., & Sengupta, A. K. (2006). Two novel applications of ion exchange fibers: Arsenic removal and chemical-free softening of hard water. Environmental Progress, 25(4), 300–311. https://doi.org/10.1002/ep.10163
33. Grill, E., Winnacker, E. L., & Zenk, M. H. (1987). Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proceedings of the National Academy of Sciences of the United States of America, 84(2), 439–443. https://doi.org/10.1073/pnas.84.2.439
34. Ha, N. T. H., Sakakibara, M., & Sano, S. (2011). Accumulation of Indium and other heavy metals by Eleocharis acicularis: An option for phytoremediation and phytomining. Bioresource Technology, 102(3), 2228–2234. https://doi.org/10.1016/j.biortech.2010.10.014
35. Hasanuzzaman, M., Borhannuddin Bhuyan, M. H. M., Anee, T. I., Parvin, K., Nahar, K., Al Mahmud, J., & Fujita, M. (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8(9). https://doi.org/10.3390/antiox8090384
36. Hashmi, F., & Pearce, J. M. (2011). Viability of Small-Scale Arsenic-Contaminated-Water Purifi cation Technologies for Sustainable Development in Pakistan. Sustainable Development, 19(4), 223–234. https://doi.org/https://doi.org/10.1002/sd.414
37. Heaton, A. C. P., Rugh, C. L., Wang, N. J., & Meagher, R. B. (1998). Phytoremediation of mercury- and methylmercury-polluted soils using genetically engineered plants. Soil and Sediment Contamination, 7(4), 497–509. https://doi.org/10.1080/10588339891334384
38. Helsen, L., Van den Bulck, E., Van den Broeck, K., & Vandecasteele, C. (1997). Low-temperature pyrolysis of CCA-treated wood waste: Chemical determination and statistical analysis of metal input and output; mass balances. Waste Management, 17(1), 79–86. https://doi.org/10.1016/S0956-053X(97)00040-8
39. Hering, J. G., Chen, P. Y., Wilkie, J. A., Elimelech, M., & Liang, S. (1996). Arsenic removal by ferric chloride. Journal / American Water Works Association, 88(4), 155–167. https://doi.org/10.1002/j.1551-8833.1996.tb06541.x
40. Islam, M. S., Saito, T., & Kurasaki, M. (2015). Phytofiltration of arsenic and cadmium by using an aquatic plant, Micranthemum umbrosum: Phytotoxicity, uptake kinetics, and mechanism. Ecotoxicology and Environmental Safety, 112, 193–200. https://doi.org/10.1016/j.ecoenv.2014.11.006
41. Islam, M. S., Sikder, M. T., & Kurasaki, M. (2017). Potential of Micranthemum umbrosum for phytofiltration of organic arsenic species from oxic water environment. International Journal of Environmental Science and Technology, 14(2), 285–290. https://doi.org/10.1007/s13762-016-1142-9
42. Jasrotia, S., Kansal, A., & Kishore, V. V. N. (2014). Arsenic phyco-remediation by Cladophora algae and measurement of arsenic speciation and location of active absorption site using electron microscopy. Microchemical Journal, 114, 197–202. https://doi.org/10.1016/j.microc.2014.01.005
43. Jones, F. T. (2007). A broad view of arsenic. Poultry Science, 86(1), 2–14. https://doi.org/10.1093/ps/86.1.2
44. Author. (2018).
45. Karimi, N., Seyed Majid Ghaderian, A. R., Feldmann, J., & Meharg, A. A. (2003). An arsenic-accumulating, hypertolerant brassica, Isatis capadocica. The Journal of Physiology, 547(3), 971–976. https://doi.org/10.1111/j..2003.t01-2-00971.x
46. Kartinen, E. O., & Martin, C. J. (1995). An overview of arsenic removal processes. Desalination, 103(1–2), 79–88. https://doi.org/10.1016/0011-9164(95)00089-5
47. Katsoyiannis, I. A., & Zouboulis, A. I. (2006). Comparative evaluation of conventional and alternative methods for the removal of arsenic from contaminated groundwaters. Reviews on Environmental Health, 21(1), 25–41. https://doi.org/10.1515/REVEH.2006.21.1.25
48. King, D. J., Doronila, A. I., Feenstra, C., Baker, A. J. M., & Woodrow, I. E. (2008). Phytostabilisation of arsenical gold mine tailings using four Eucalyptus species: Growth, arsenic uptake and availability after five years. Science of the Total Environment, 406(1–2), 35–42. https://doi.org/10.1016/j.scitotenv.2008.07.054
49. Klaber, N. S., & Barker, A. V. (2014). Accumulation of Phosphorus and Arsenic in Two Perennial Grasses for Soil Remediation. Communications in Soil Science and Plant Analysis, 45(6), 810–818. https://doi.org/10.1080/00103624.2013.857681
50. Kochian, L. V. (2004). Phytofiltration of Arsenic from Drinking Water Using Arsenic-Hyperaccumulating Ferns. Environmental Science and Technology, 38(12), 3412–3417. https://doi.org/https://doi.org/10.1021/es0351645
51. Koller, C. E., Patrick, J. W., Rose, R. J., Offler, C. E., & MacFarlane, G. R. (2007). Pteris umbrosa R. Br. as an arsenic hyperaccumulator: accumulation, partitioning and comparison with the established As hyperaccumulator Pteris vittata. Chemosphere, 66(7), 1256–1263. https://doi.org/10.1016/j.chemosphere.2006.07.029
52. Kozul, C. D., Ely, K. H., Enelow, R. I., & Hamilton, J. W. (2009). Low-dose arsenic compromises the immune response to influenza A infection in vivo. Environmental Health Perspectives, 117(9), 1441–1447. https://doi.org/10.1289/ehp.0900911
53. Krämer, U. (2005). Phytoremediation: Novel approaches to cleaning up polluted soils. Current Opinion in Biotechnology, 16(2), 133–141. https://doi.org/10.1016/j.copbio.2005.02.006
54. Lalita N Abhyankar, Miranda R Jones, Eliseo Guallar, A. N.-A. (2012). Review Arsenic Exposure and Hypertension?: A Systematic Review. Environmental Health Perspectives, 120(4), 494–500. https://doi.org/10.1289/ehp.1103988
55. Landner, L. (1998). Arsenic in the aquatic environment-speciation and biological effects.
56. Lee, C. P., & Wen, L. S. (2019). Physical and chemical characterization of dissolved arsenic in the South China Sea. Marine Chemistry, 209(January), 128–138. https://doi.org/10.1016/j.marchem.2019.02.001
57. Li, B., Gu, B., Yang, Z., & Zhang, T. (2018). The role of submerged macrophytes in phytoremediation of arsenic from contaminated water: A case study on Vallisneria natans (Lour.) Hara. Ecotoxicology and Environmental Safety, 165(August), 224–231. https://doi.org/10.1016/j.ecoenv.2018.09.023
58. Li, G., Khan, S., Ibrahim, M., Sun, T. R., Tang, J. F., Cotner, J. B., & Xu, Y. Y. (2018). Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium. Journal of Hazardous Materials, 348(October 2017), 100–108. https://doi.org/10.1016/j.jhazmat.2018.01.031
59. Lizama A., K., Fletcher, T. D., & Sun, G. (2011). Removal processes for arsenic in constructed wetlands. Chemosphere, 84(8), 1032–1043. https://doi.org/10.1016/j.chemosphere.2011.04.022
60. Luongo, T., & Ma, L. Q. (2005). Characteristics of arsenic accumulation by Pteris and non- Pteris ferns. Plant and Soil, 277, 117–126. https://doi.org/10.1007/s11104-005-6335-9
61. Magalhães, M. C. F. (2002). Arsenic . An environmental problem limited by solubility *. Pure and Applied Chemistry, 74(10), 1843–1850. https://doi.org/https://doi.org/10.1351/pac200274101843
62. Mandal, P., Debbarma, S. R., Saha, A., & Ruj, B. (2016). Disposal Problem of Arsenic Sludge Generated During Arsenic Removal from Drinking Water. Procedia Environmental Sciences, 35, 943–949. https://doi.org/10.1016/j.proenv.2016.07.084
63. Mary Kensa, V. (2011). Bioremediation - An overview. Journal of Industrial Pollution Control, 27(2), 161–168.
64. McGregor, D., Boobis, A., Binaglia, M., Botham, P., Hoffstadt, L., Hubbard, S., Petry, T., Riley, A., Schwartz, D., & Hennes, C. (2010). Guidance for the classification of carcinogens under the globally harmonised system of classification and labelling of chemicals (GHS). Critical Reviews in Toxicology, 40(3), 245–285. https://doi.org/10.3109/10408440903384717
65. Meakin, C. J., Martin, E. M., Szilagyi, J. T., Nylander-French, L. A., & Fry, R. C. (2019). Inorganic Arsenic as an Endocrine Disruptor: Modulation of the Glucocorticoid Receptor Pathway in Placental Cells via CpG Methylation. Chemical Research in Toxicology, 32(3), 493–499. https://doi.org/10.1021/acs.chemrestox.8b00352
66. Melkonian, S., Argos, M., Pierce, B. L., Chen, Y., Islam, T., Ahmed, A., Syed, E. H., Parvez, F., Graziano, J., Rathouz, P. J., & Ahsan, H. (2011). A prospective study of the synergistic effects of arsenic exposure and smoking, sun exposure, fertilizer use, and pesticide use on risk of premalignant skin lesions in bangladeshi men. American Journal of Epidemiology, 173(2), 183–191. https://doi.org/10.1093/aje/kwq357
67. Mirza, N., Mahmood, Q., Maroof Shah, M., Pervez, A., & Sultan, S. (2014). Plants as useful vectors to reduce environmental toxic arsenic content. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/921581
68. Mirza, N., Pervez, A., Mahmood, Q., Shah, M. M., & Shafqat, M. N. (2011). Ecological restoration of arsenic contaminated soil by Arundo donax L. Ecological Engineering, 37(12), 1949–1956. https://doi.org/10.1016/j.ecoleng.2011.07.006
69. Misbahuddin, M., & Fariduddin, A. (2010). Water Hyacinth Removes Arsenic from Arsenic- Contaminated Drinking Water Water Hyacinth Removes Arsenic from Arsenic-Contaminated Drinking Water. Archives of Environmental Health: An International Journal, 57(May 2012), 3–6. https://doi.org/https://doi.org/10.1080/00039890209602082
70. Mishra, S., Mattusch, J., & Wennrich, R. (2017). Accumulation and transformation of inorganic and organic arsenic in rice and role of thiol-complexation to restrict their translocation to shoot. Scientific Reports, 7(40522). https://doi.org/10.1038/srep40522
71. Mizuta, N., Mizuta, M., Ito, F., Ito, T., Uchida, H., Watanabe, Y., Akama, H., Murakami, T., Hayashi, F., Nakamura, K., Yamaguchi, T., Mizuta, W., Oishi, S., & Matsumura, H. (1956). AN OUTBREAK OF ACUTE ARSENIC POISONING CAUSED BY ARSENIC CONTAMINATED SOY-SAUCE (SHOYU): A CLINICAL REPORT OF 220 CASES. Nihon Naika Gakkai Zasshi, 45(8), 867–880. https://doi.org/10.2169/naika.45.867
72. Mohanty, M. (2016). Post-Harvest Management of Phytoremediation Technology. Journal of Environmental & Analytical Toxicology, 6(5). https://doi.org/10.4172/2161-0525.1000398
73. Mykolenko, S., Liedienov, V., Kharytonov, M., Makieieva, N., Kuliush, T., Queralt, I., Marguí, E., Hidalgo, M., Pardini, G., Gispert, M., Wali, A., Colinet, G., Ksibi, M., Muntau, H., Quevauviller, P., Griepink, B., Dukši, I., Vincek, D., Horváth, M., … Jiménez, M. N. (2013). Phytoremediation of metal enriched mine waste: a review. Global Journal of Environmental Research, 70(4), 135–151. http://dx.doi.org/10.1016/j.gexplo.2016.09.013%0Ahttps://doi.org/10.1016/j.envpol.2018.02.053
74. Nahar, N., Rahman, A., Nawani, N. N., Ghosh, S., & Mandal, A. (2017). Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana. Journal of Plant Physiology, 218, 121–126. https://doi.org/10.1016/j.jplph.2017.08.001
75. Naidu, R., Smith, E., Owens, G., & Bhattacharya, P. (2006). Managing Arsenic in the Environment: From Soil to Human Health (Google eBook) (Issue May 2014). CSIRO publishing. http://books.google.com/books?hl=en&lr=&id=izVjtgwO_8kC&pgis=1
76. Nedjimi, B. (2021). Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Applied Sciences, 3(3). https://doi.org/10.1007/s42452-021-04301-4
77. Newete, S. W., & Byrne, M. J. (2016). The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth. Environmental Science and Pollution Research, 23(11), 10630–10643. https://doi.org/10.1007/s11356-016-6329-6
78. Niazi, N. K., Bibi, I., Fatimah, A., Shahid, M., Javed, T., Wang, H., Ok, Y. S., Bashir, S., Murtaza, B., Ahmad, Z., Shakoor, M. B., Geoscience, S. C., Road, A. I., Biochar, K., & Science, E. (2017). Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: Morphological and physiological response. International Journal of Phytoremediation, 19(7), 670–678. https://doi.org/10.1080/15226514.2016.1278427
79. Nidheesh, P. V., & Singh, T. S. A. (2017). Arsenic removal by electrocoagulation process: Recent trends and removal mechanism. Chemosphere, 181, 418–432. https://doi.org/10.1016/j.chemosphere.2017.04.082
80. Ortega, A., Oliva, I., Contreras, K. E., González, I., Cruz-Díaz, M. R., & Rivero, E. P. (2017). Arsenic removal from water by hybrid electro-regenerated anion exchange resin/electrodialysis process. Separation and Purification Technology, 184, 319–326. https://doi.org/10.1016/j.seppur.2017.04.050
81. Phillips, J., & French, M. (1998). The pure beer campaign and arsenic poisoning, 1896-1903. Rural History, 9(2), 195–209. https://doi.org/10.1017/s0956793300001576
82. Pickering, I. J., Prince, R. C., George, M. J., Smith, R. D., George, G. N., & Salt, D. E. (2000). Reduction and Coordination of Arsenic in Indian Mustard 1. Plant Physiology, 122(4), 1171–1178. https://doi.org/10.1104/pp.122.4.1171
83. Poynton, C. Y., Huang, J. W., Blaylock, M. J., Kochian, L. V., & Elless, M. P. (2004). Mechanisms of arsenic hyperaccumulation in Pteris species: Root As influx and translocation. Planta, 219(6), 1080–1088. https://doi.org/10.1007/s00425-004-1304-8
84. Rahman, M. A., & Hasegawa, H. (2011). Aquatic arsenic?: Phytoremediation using floating macrophytes. Chemosphere, 83(5), 633–646. https://doi.org/10.1016/j.chemosphere.2011.02.045
85. Rahman, M. A., Hasegawa, H., Ueda, K., Maki, T., Okumura, C., & Rahman, M. M. (2007). Arsenic accumulation in duckweed (Spirodela polyrhiza L.): A good option for phytoremediation. Chemosphere, 69(3), 493–499. https://doi.org/10.1016/j.chemosphere.2007.04.019
86. Rahman, M. S., Clark, M. W., Yee, L. H., & Burton, E. D. (2019). Arsenic(V) sorption kinetics in long-term arsenic pesticide contaminated soils. Applied Geochemistry, 111(June), 104444. https://doi.org/10.1016/j.apgeochem.2019.104444
87. Raj, A., & Singh, N. (2015). Phytoremediation of Arsenic Contaminated Soil by Arsenic Accumulators?: A Three Year Study. Bulletin of Environmental Contamination and Toxicology, 94(3). https://doi.org/10.1007/s00128-015-1486-8
88. Raj, D. (2019). Bioaccumulation of mercury, arsenic, cadmium, and lead in plants grown on coal mine soil. Human and Ecological Risk Assessment, 25(3), 659–671. https://doi.org/10.1080/10807039.2018.1447360
89. Robinson, B., Duwig, C., Bolan, N., Kannathasan, M., & Saravanan, A. (2003). Uptake of arsenic by New Zealand watercress (Lepidium sativum). Science of the Total Environment, 301(1–3), 67–73. https://doi.org/10.1016/S0048-9697(02)00294-2
90. Robinson, B., Kim, N., Marchetti, M., Moni, C., Schroeter, L., Dijssel, C. Van Den, Milne, G., & Clothier, B. (2006). Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone , New Zealand. Environmental and Experimental Botany, 58(1–3), 206–215. https://doi.org/10.1016/j.envexpbot.2005.08.004
91. Sakakibara, M., Watanabe, A., Sano, S., Inoue, M., & Kaise, T. (2007). Phytoextraction and phytovolatili-zation of arsenic from as-contaminated soils by Pteris vittata. Association for Environmental Health and Sciences - 22nd Annual International Conference on Contaminated Soils, Sediments and Water 2006, 12(January), 258–263.
92. Sanchez-Hernandez, J. C., Ro, K. S., & Díaz, F. J. (2019). Biochar and earthworms working in tandem: Research opportunities for soil bioremediation. Science of the Total Environment, 688, 574–583. https://doi.org/10.1016/j.scitotenv.2019.06.212
93. Sandhi, A., Landberg, T., & Greger, M. (2018). Phytofiltration of arsenic by aquatic moss (Warnstorfia fluitans). Environmental Pollution, 237, 1098–1105. https://doi.org/10.1016/j.envpol.2017.11.038
94. Sasmaz, A., & Obek, E. (2009). The accumulation of arsenic , uranium , and boron in Lemna gibba L . exposed to secondary effluents. Ecological Engineering, 35(10), 1564–1567. https://doi.org/10.1016/j.ecoleng.2009.06.007
95. Author. (2017).
96. Sharma, I. (2012). Arsenic induced oxidative stress in plants. Biologia, 67(3), 447–453. https://doi.org/10.2478/s11756-012-0024-y
97. Shrivastava, A., Ghosh, D., Dash, A., & Bose, S. (2015). Arsenic Contamination in Soil and Sediment in India: Sources, Effects, and Remediation. Current Pollution Reports, 1(1), 35–46. https://doi.org/10.1007/s40726-015-0004-2
98. Signes-Pastor, A., Burló, F., Mitra, K., & Carbonell-Barrachina, A. A. (2007). Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil. Geoderma, 137(3–4), 504–510. https://doi.org/10.1016/j.geoderma.2006.10.012
99. Silva Gonzaga, M. I., Gonzaga Santos, J. A., & Ma, L. Q. (2006). Arsenic phytoextraction and hyperaccumulation by fern species. Scientia Agricola, 63(1), 90–101. https://doi.org/10.1590/s0103-90162006000100015
100. Singh, N., Raj, A., Khare, P. B., Tripathi, R. D., & Jamil, S. (2010). Bioresource Technology Arsenic accumulation pattern in 12 Indian ferns and assessing the potential of Adiantum capillus-veneris , in comparison to Pteris vittata , as arsenic hyperaccumulator. Bioresource Technology, 101(23), 8960–8968. https://doi.org/10.1016/j.biortech.2010.06.116
101. Slavkovich, V., Argos, M., Hasan, R., Ahmed, A., & Islam, T. (2013). Arsenic Exposure and Impaired Lung Function. Findings from a Large Population-based Prospective Cohort Study. American Journal of Respiratory and Critical Care Medicine, 188(7), 813–819. https://doi.org/10.1164/rccm.201212-2282OC
102. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source , behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568. https://doi.org/https://doi.org/10.1016/S0883-2927(02)00018-5
103. Song, W. Y., Park, J., Mendoza-Cózatl, D. G., Suter-Grotemeyer, M., Shima, D., Hörtensteiner, S., Geisler, M., Weder, B., Rea, P. A., Rentsch, D., Schroeder, J. I., Lee, Y., & Martinoia, E. (2010). Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proceedings of the National Academy of Sciences of the United States of America, 107(49), 21187–21192. https://doi.org/10.1073/pnas.1013964107
104. Sultana, R., & Kobayashi, K. (2011). Potential of barnyard grass to remediate arsenic-contaminated soil. Weed Biology and Management, 11(1), 12–17. https://doi.org/10.1111/j.1445-6664.2011.00400.x
105. Taylor, P., Mendoza, R. M. O., Kan, C., Chuang, S., & Pingul-ong, S. M. B. (2014). Journal of Environmental Science and Health , Part A?: Toxic / Hazardous Substances and Environmental Feasibility studies on arsenic removal from aqueous solutions by electrodialysis Feasibility studies on arsenic removal from aqueous solutions by electro. November, 37–41. https://doi.org/10.1080/10934529.2014.859035
106. Taylor, P., Salido, A. L., Hasty, K. L., Lim, J., Butcher, D. J., Salido, A. L., Hasty, K. L., Lim, J., & Butcher, D. J. (2003). Phytoremediation of Arsenic and Lead in Contaminated Soil Using Chinese Brake Ferns ( Pteris vittata ) and Indian Mustard ( Brassica juncea ). International Journal of Phytoremediation, 5, 89–103. https://doi.org/10.1080/713610173
107. Thakur, S., Choudhary, S., Majeed, A., Singh, A., & Bhardwaj, P. (2020). Insights into the Molecular Mechanism of Arsenic Phytoremediation. Journal of Plant Growth Regulation, 39(2), 532–543. https://doi.org/10.1007/s00344-019-10019-w
108. Tripathi, R. D., Srivastava, S., Mishra, S., Singh, N., Tuli, R., Gupta, D. K., & Maathuis, F. J. M. (2007). Arsenic hazards?: strategies for tolerance and remediation by plants. Trends in Biotechnology, 25(4), 158–165. https://doi.org/10.1016/j.tibtech.2007.02.003
109. Author. (2017).
110. Author. (2014).
111. Vatamaniuk, O. K., Mari, S., Lu, Y. P., & Rea, P. A. (2000). Mechanism of heavy metal ion activation of phytochelatin (PC) synthase. Blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. Journal of Biological Chemistry, 275(40), 31451–31459. https://doi.org/10.1074/jbc.M002997200
112. Visoottiviseth, P., Francesconi, K., & Sridokchan, W. (2002). The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environmental Pollution, 118(3), 453–461. https://doi.org/https://doi.org/10.1016/S0269-7491(01)00293-7
113. Vithanage, M., Dabrowska, B. B., Mukherjee, A. B., Sandhi, A., & Bhattacharya, P. (2012). Arsenic uptake by plants and possible phytoremediation applications: A brief overview. Environmental Chemistry Letters, 10(3), 217–224. https://doi.org/10.1007/s10311-011-0349-8
114. Vocciante, M., Caretta, A., Bua, L., Bagatin, R., Franchi, E., Petruzzelli, G., & Ferro, S. (2019). Enhancements in phytoremediation technology: Environmental assessment including different options of biomass disposal and comparison with a consolidated approach. Journal of Environmental Management, 237(November 2018), 560–568. https://doi.org/10.1016/j.jenvman.2019.02.104
115. Xie, Q. E., Yan, X. L., Liao, X. Y., & Li, X. (2009). The arsenic hyperaccumulator fern Pteris vittata L. Environmental Science and Technology, 43(22), 8488–8495. https://doi.org/10.1021/es9014647
116. Xie, Z. M., & Huang, C. Y. (1998). Control of arsenic toxicity in rice plants grown on an arsenic-polluted paddy soil. Communications in Soil Science and Plant Analysis, 29(15–16), 2471–2477. https://doi.org/10.1080/00103629809370125
117. Xue, P. ying, & Yan, C. zhou. (2011). Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle. Chemosphere, 85(7), 1176–1181. https://doi.org/10.1016/j.chemosphere.2011.09.051
118. Yamaguchi, N., Nakamura, T., Dong, D., Takahashi, Y., Amachi, S., & Makino, T. (2011). Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere, 83(7), 925–932. https://doi.org/10.1016/j.chemosphere.2011.02.044
119. Zhang, X., Hu, Y., Liu, Y., & Chen, B. (2011). Arsenic uptake, accumulation and phytofiltration by duckweed (Spirodela polyrhiza L.). Journal of Environmental Sciences, 23(4), 601–606. https://doi.org/10.1016/S1001-0742(10)60454-8
120. Zhao, F. J., Wang, J. R., Barker, J. H. A., Schat, H., Bleeker, P. M., & McGrath, S. P. (2003). The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytologist, 159(2), 403–410. https://doi.org/10.1046/j.1469-8137.2003.00784.x
Research Articles

How to Cite

Critical review on arsenic: Its occurrence, contamination and remediation from water and soil. (2021). Journal of Applied and Natural Science, 13(3), 861-879. https://doi.org/10.31018/jans.v13i3.2757