##plugins.themes.bootstrap3.article.main##

Mansha Gul F. A. Khan Shafiq A Wani S. A. Bhat S. A. Mir A. Malik Amit Kumar S. Narayan Moinuddin Fasil Fayaz S. A. Lone

Abstract

Considering the rich nutritional status and possibility of broccoli in improving the profitable yield, and wide role of Mel in regulating the plant physiological process, an investigation was carried out at the division of Basic Sciences and Humanities during 2017 to investigate the effect of foliar application of Mel on leaf photosynthetic and biochemical attributes broccoli. Thirty days old and uniform seedlings of broccoli cv. Palam Samridhi were transplanted in the field at a spacing of 45 × 45cm. Different concentrations of Mel, viz. 0, 20, 40, 60 and 80 ppm were sprayed on the plant foliage at 15 days after transplanting (DAT) replicating each treatment four times. Leaf gas exchange and biochemical attributes were tested following the standard procedures. The Results showed the lowest stipulated rate of photosynthesis (10.87 µmole.m-2.sec-1), stomatal conductance (301.44 mole H2O.m-2ses-1) and leaf transpiration (1. 14 mole H2O.m-2ses-1) in untreated plants.  Different doses of Mel significantly increased the values of these attributes and the highest values of photosynthesis (18.63 µmole.m-2.sec-1), stomatal conductance (324.37 mmole.m-2.ses-1) and leaf transpiration (3.23 mmole.m-2.ses-1) with Mel 60 ppm were recorded. The alterations in different biochemical attributes were also evident due to foliar application of Mel and maximum leaf sugar (77.0 and 85.9µg/g), protein (56.9 and 77.3 µg/g), total phenols (260.1 and 339.9 mg/100g), antioxidants (142.8 and 159.9 mg GAE /100g DW) and MSI (94.89 and 97.43 percent) values with Mel 60ppm at 30 and 60DAT, respectively. Therefore, the present study signifies the useful effects of Mel in regulating the physio-biochemical properties of broccoli.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Antioxidants, Broccoli, MDA, Melatonin, MSI, photosynthesis

References
Ancu, S., Chitu, C., Marin, F.C., Ancu, I. and Plopa, C. (2014). Correlation of stomatal conductance with photosymthetic capacity of six walnut cultivars from the national assortment. South-west J. Hortic. Biol. Environ., 5: 1-10.
Arnao, M.B. and Hernandez J. (2015). Functions of melatonin in plants: a review. J. Pineal Res., 59:133-50, DOI: 10.1111/jpi.12253
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254
Bray, H.G. and Thorpe, W.V. (1954). Analysis of phenolic compounds of interest in metabolism. Methods Biochem. Anal., 52: 1-27, https://doi.org/10.1002/9780 470110171.ch2
Cakmak, I. and Hors, W.J. (1991). Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant., 83: 463 – 468, https://doi.org/10.1111/j.1399-3054.1991.tb00121.x
Decoteau, D.R. (2000). Vegetable Crops. Upper Rever Company. New Jersey. U.S.A.
Dubbels, R., Reiter, R.J., Klenke, E., Goebel, A., Schnakenberg, E., Ehleers, C., Schiwara, H.W. and Schloot, W. (1995). Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J. Pineal Res., 18: 28-31, DOI: 10.1111/j.1600-079x.1995.tb00136.x
Dubois, M., Gilles, K.A., Harmilton, J.K., Rebers, P.A. and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem., 28: 350-356, https://doi.org/10.1021/ac60111a017
Gao, W., Zhang, Y., Feng, Z., Bai, Q., He, J. and Wang, Y. (2018). Effect of melatonin on antioxidant capacity in naked oat seedlings under drought stress. Molecules, 23; 1580, DOI: 10.3390/molecules23071580
Hattori, A., Migitaka, H., Iigo, M., Itoh, M., Yamamoto, K., Ohtani-Kaneko, R., Hara, M., Suzuki, T., Reiter, R.J. (1995). Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem. Mol. Biol. Int., 35: 627-634.
Hernandez-Ruiz, J. and Arnao, M.B. (2008). Distribution of melatonin in different zones of lupin and barley plants at different ages in the presence and absence of light. J. Agr. Food Chem., 56: 10567-10573, https://doi.org/10.1021/jf8022063
Higdon, J.V., Delage, B., Williams, D.E. and Dashwood R.H. (2007). Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol. Res., 55 (3): 224-236, doi: 10.1016/j.phrs.2007.01.009.
Huang, B., Chen, Y., Zhao, Y., Ding, C., Liao. J., Hu, C., Zhou, L., Zhang, Z., Yuan, S., and Yuan, M. (2019). Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. Front. Plant Sci., https://doi.org/10.3389/fpls.2019.00677
Jinag, X., Li, H., and Song, X. (2016). Seed priming with melatonin effects on seed germination and seedling growth in maize under salinity stress. Pak. J. Bot., 48: 1345-1352.
Lazar, D., Murch, S.J., Beilby, M..J and Khazaaly S. (2013). Exogenous melatonin affects photosynthesis in characeae Chara australis. Plant Signal. Behav., 8: e23279, doi: 10.4161/psb.23279
Li, C., Wang, P., Wei, Z., Liang, Liu, C., Yin, L., Jia, D., Fu., M. and Ma, F. (2012). The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J. Pineal Res., 53: 298-306, doi: 10.1111/j.1600-079X.2012.00999.x
Li, J., Arkorful, E., Cheng, S., Zhou, Q., Li, H., Chen, X., Sun, K. and Li, X. (2018). Alleviation of cold damage by exogenous application of melatonin in vegetatively propagated tea plant (Camellia sinensis (L.) O. Kuntze). Sci. Hortic., 238: 356-62, https://doi.org/10.1016/j.scien ta.2018.04.068
Liang, D., Shen, Y., Ni, Z., Wang, Q., Lei, Z., Xu, N., Deng, Q., Lin, L., Wang, J. Lv, X., and Xia, H. (2018). Exogenous melatonin application delays senescence of kiwifruit leaves by regulating the antioxidant capacity and biosynthesis of flavonoids. Front. Plant Sci., 9:426, https://doi.org/10.3389/fpls.2018.00426.
Mansha, Gul, Khan, F.A., Wani, S.A., Bhat, S.A., Mir, S.A., Malik, A.A., Kumar, A. and Narayan S. (2018). Foliar application of melatonin modulates the growth and photosynthetic pigments in broccoli cv. Palam Samridhi. SKUAST J. Res., 20: 193-198.
Nawaz, M.A., Huang, Y., Bie, Z., Ahmed, W., Reiter, R.J., Niu, M. and Hameed, S. (2016). Melatonin: current status and future perspectives in plant science. Front. Plant Sci., 6: 1230, https://doi.org/10.3389/fpls.2015.01230.
Pandi-Perumal, S.R., Srinivasan, V., Maestroni, G.J.M., Cardinaldi, D.P., Poeggeler, B. and Hardeland, R. (2006). Melatonin: nature's most versatile biological signal? The FEBS J., 273: 2813-38, DOI: 10.1111/j.1742-4658.2006.05322.x
Panse, V.G. and Sukhatme, P.V. (1967). Statistical Methods for Agricultural Workers, 2nd Edition, Indian Council of Agricultural Research, New Delhi.
Premachandra, G.S., Saneoka, H., Fujita, K., and Ogata, S. (1990). Cell membrane stability an indicator of drought tolerance as affected by applied N in soybean. J. Agric. Soc. Camp., 115: 63-66, DOI: https://doi.org/10.1017/S0021859600073925
Prieto, P., Pineda, M. and Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem., 269: 337-341, DOI: 10.1006/abio.1999.4019.
Ramakrishna, A., Giridhar, P., Sankar, K.U. and Ravishankar, G.A. (2012). Melatonin and serotonin profiles in beans of Coffea species. J. Pineal Res., 52: 470-476, DOI: 10.1111/j.1600-079X.2011.00964.x
Reiter, R.J., Tan, D., Zhou, Z., Cruz, M.H.C., Fuentes-Broto, L. and Galano, A. (2015). Phytomelatonin: assisting plants to survive and thrive. Molecules, 20: 7396-7437, doi: 10.3390/molecules20047396
Sairam R.K. (1994). Effect of moisture stress on physiological activities of. two contrasting wheat genotypes. Indian J. Exp. Biol., 31:551-553
Simkin AJ, Lopez-Calcagno PE and Raines CA. (2019). Feeding the world: improving photosynthetic efficiency for sustainable crop production. J. Exp. Bot., 70 (4): 1119–1140, 2019 doi:10.1093/jxb/ery445
Singh, N.P. (2007). Basic concept of vegetable science. International Book Distributing Co. Lucknow, pp: 444.
Stephen, K., Khan, F.A., Bhat, S.A., Narayan, S., Mir, S.A., Mir, M.S., Hussain, K., Mansha Gul, Asma K., Irtiza, S., Hussain, S.M. and Lone, S.A. (2018). Optimizing priming concentration and duration of various priming agents for improved seed germination in chilli (Capsicum annum L.). J. Pharmacogn. Phytochem., 7: 2680-2693.
Szafra?ska, K., Reiter, R.J., and Posmyk, M.M. (2017). Melatonin Improves the Photosynthetic Apparatus in Pea Leaves Stressed by Paraquat via Chlorophyll Breakdown Regulation and Its Accelerated de novo Synthesis. Front. Plant Sci., 8: 878, https://doi.org/10.3389/fpls.2017.00878
Wei, W., Li, Q.T., Chu, Y.N., Reiter, R.J., Yu, X.M., Zhu, D.H., Zhang, W.K., Ma, B., Lin, Q., Zhang J.S. and Chen S.Y. (2015). Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J. Exp. Bot., 66: 695-707, doi: 10.1093/jxb/eru392
XioLong, Y., Hui, X., TiaLai, L. and Rui, W. (2017). Effects of exogenous melatonin on photosynthesis of tomato leaves under drought stress. Scientia Agricultura Sinica, 50 (16): 3186-3195, DOI: 10.3864/j.issn.0578-1752.2017.16.013
Ye, J., Wang, S., Deng, X., Yin, L., Xiong, B. and Wang, X. (2016). Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiol. Plant., 38:48; DOI 10.1007/s11738-015-2045-y
Yu, K., Deng, S.L., Sun, T.C., Li, Y.Y. and Liu, Y.X. (2018). Melatonin regulates the synthesis of steroid hormones on male reproduction: a review, Molecules, 23: (2): 447, DOI: 10.3390/molecules23020447
Zhang, H.J., Zhang, N., Yang, R.C., Wang, L., Sun, Q.Q,, Li, B.D., Cao, Y.Y., Weeda, S., Zhao, B., Ren, S. and Guo, Y.D. (2014). Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). J. Pineal Res., 57: 269-279, https://doi.org/10.1111/jpi.12167
Zhang, R., Sun, Y., Liu, Z., Jin, W. and Sun, Y. (2017). Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress. J. Pineal Res., 62: e12403, doi: 10.1111/jpi.12403.
Zhao, H., Su, T., Huo, L., Wei, H., Jiang, Y., Xu, L. and Ma, F. (2015). Unveiling the mechanism of melatonin impacts on maize seedling growth: sugar metabolism as a case. J. Pineal Res., 59: 255-266, doi: 10.1111/jpi.12258.
Citation Format
How to Cite
Gul, M. ., Khan, F. A. ., Wani, S. A. ., Bhat, S. A. ., Mir, S. A. ., Malik , A. ., Kumar, A. ., Narayan, S. ., Moinuddin, Fayaz , F. ., & Lone, S. A. . (2021). Effects of foliar application of melatonin on gas exchange and certain biochemical characteristics broccoli cv. Palam Samridhi. Journal of Applied and Natural Science, 13(2), 791–797. https://doi.org/10.31018/jans.v13i2.2673
More Citation Formats:
Section
Research Articles

Most read articles by the same author(s)

1 2 > >>