Isolation, characterization and optimization of bacterial isolate SARR1 for biodegradation of pretreated low density polyethylene
Article Main
Abstract
Accumulation of low-density polyethylene (LDPE) has caused a threat to the environment because of its stable and inert nature as it cannot be degraded easily by microorganisms. Its lightweight, low cost, strength, durability, and its various other applications, have led to the wide usage of the polymer, which is exerting a negative effect on both marine and land biota. The development of an eco-friendly or a promising strategy is needed to reduce LDPE waste from both land and water. In the present study, observations have been made to isolate highly efficient LDPE degrading bacteria. The response surface methodology (RSM) was used to predict the best optimization of media for the degradation of LDPE by isolate SARR1. The isolate SARR1 was selected through primary screening by weight loss method and secondary screening using CO2 evolution test, TTC and MATH Test. The isolate SARR1 showed 6.30 ± 0.25 g/L CO2 evolution. The microbial adhesion hydrophobicity (MATH) was observed during log phase (100 to 56.89 ± 0.97 %) and stationary phase (100 to 82.92 ± 1.24 %). An isolate SARR1 converted the TTC into red coloured insoluble triphenyl formazan (TPF) after incubation of 7 days. The isolated bacteria SARR1 showed 38.3 ± 1.27 % biodegradation efficiency in the pretreated LDPE strips at 37 °C and pH 7.0 under optimized conditions within 30 days of incubation. This bioremediation and biodegradation approach is eco-friendly and safe for the environment. The results of treatment with isolate SARR1 had a potential hope to degrade LDPE at higher rate than natural degradation.
Article Details
Article Details
Biodegradation, Bioremediation, Durability, Eco-friendly, LDPE, Bacteria
Balestri, E., Menicagli, V., Ligorini, V., Fulignati, S., Raspolli Galletti, A.M. & Lardicci, C. (2019). Phytotoxicity assessment of conventional and biodegradable plastic bags using seed germination test. Ecol. Indic., 102, 569-580. https://doi.org/10.1016/j.ecolind.2019.03.005.
Bardají, D. K. R., Furlan, J. P. R. & Stehling, E. G. (2019). Isolation of a polyethylene degrading Paenibacillus sp. from a landfill in Brazil. Arch. Microbiol., 201, 699-704. https://doi.org/10.1007/s00203-019-01637-9.
Bhatia, M., Girdhar, A., Tiwari, A. & Nayarisseri, A. (2014). Nayarisseri, Implications of a novel Pseudomonas species on low density polyethylene biodegradation: an in vitro to in silico approach. Springerplus., 3. https://doi.org/10.1186/2193-1801-3-497.
Das, M. P. & Kumar, S. (2015). An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech., 5, 81-86. https://doi.org/10.1007/s13205-014-0205-1.
Emadian, S.M., Onay, T.T. & Demirel, B. (2017) . Biodegradation of bioplastics in natural environments. Waste Manag., 59 ,526-536. https://doi.org/10.1016/j.wasma n.2016.10.006.
Erni-Cassola, G., Wright, R. J., Gibson, M. I. & Christie-Oleza, J. A. (2019). Distribution of plastic polymer types in the marine environment; A meta-analysis. J. Hazard. Mater., 369, 691-698. https://doi.org/10.1016/j.jhazmat.20 19.02.067.
Eslami, H., Shariatifar, A., Rafiee, E., Shiranian, M., Salehi, F., Hosseini, S.S., Eslami, G., Ghanbari, R. & Ebrahimi, A.A. (2019). Decolorization and biodegradation of reactive Red 198 Azo dye by a new Enterococcus faecalis–Klebsiella variicola bacterial consortium isolated from textile wastewater sludge. World J. Microbiol. Biotechnol., 35.
Esmaeili, A., Pourbabaee, A. A., Alikhani, H. A., Shabani, F. & Esmaeili, E. (2013). Biodegradation of Low-Density Polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in Soil. PLoS One., 8. https://doi.org/10.1371/journal.pone.0071720.
Gajendiran, A., Krishnamoorthy, S. & Abraham, J. (2016). Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech., 6,1-6. https://doi.org/10.1007/s13205-016-0394-x.
Ghosh, S., Qureshi, A. & Purohit, H. J. (2019). Microbial degradation of plastics: Biofilms and degradation pathways. Contam. Agric. Environ. Heal. Risks Remediat., 184-199. https://doi.org/10.26832/aesa-2019-cae-0153-014.
Gilan, I., Hadar, Y. & Sivan, A. (2004). Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl. Microbiol. Biotechnol., 65,97-104. https://doi.org/10.1007/s00253-004-1584-8.
Hadad, D., Geresh, S. & Sivan, A. (2005). Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J. Appl. Microbiol., 98,1093-1100. https://doi.org/10.1111/j.1365-2672.2005.02553.x.
Hahladakis, J. N. & Iacovidou, E. (2019). An overview of the challenges and trade-offs in closing the loop of post-consumer plastic waste (PCPW): Focus on recycling. J. Hazard. Mater., 380. https://doi.org/10.1016/j.jhazmat.2019.120887.
Harshvardhan, K. & Jha, B. (2013). Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar. Pollut. Bull., 77,100-106. https://doi.org/10.1016/j.marpolbul.2013.10.025.
Hasan, F., Shah, A. A., Hameed, A. & Ahmed, S. (2007). Synergistic effect of photo- and chemical treatment on the rate of biodegradation of low density polyethylene by Fusarium sp. AF4. J. Appl. Polym. Sci., 105,1466-1470. https://doi.org/10.1002/app.26328.
Hou, L., Xi, J., Chen, X., Li, X., Ma, W., Lu, J., Xu, J. & Lin, Y.B. (2019). Biodegradability and ecological impacts of polyethylene-based mulching film at agricultural environment. J. Hazard. Mater., 378. https://doi.org/10.1016/j.jhazmat.2019.120774.
Idowu, I. A., Atherton, W., Hashim, K., Kot, P., Alkhaddar, R., Alo, B. I. & Shaw, A. (2019). An analyses of the status of landfill classification systems in developing countries: Sub Saharan Africa landfill experiences. Waste Manag., 87,761-771. https://doi.org/10.1016/j.wasman.2019.03
Islami, A. N., Tazkiaturrizki, T. & Rinanti, A. (2019). The effect of pH-temperature on plastic allowance for Low-Density Polyethylene (LDPE) by Thiobacillus sp. and Clostridium sp. J. Phys. Conf. Ser., https://doi.org/1 0.1088/1742-6596/1402/3/033003.
Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M. A., Hussain, T., Ali, M., Rafiq, M. & Kamil, M.A. (2018). Bacterial biofilm and associated infections. J. Chinese Med. Assoc., 81,7-11. https://doi.org/10.1016/j.jcma.2017.07.012.
Kumari, A., Chaudhary, D. R. & Jha, B. (2019). Destabilization of polyethylene and polyvinylchloride structure by marine bacterial strain. Environ. Sci. Pollut. Res. 26,1507-1516. https://doi.org/10.1007/s11356-018-3465-1.
Kunlere, I. O., Fagade, O. E. & Nwadike, B. I. (2019). Biodegradation of low density polyethylene (LDPE) by certain indigenous bacteria and fungi. Int. J. Environ. Stud., 76, 428-440. https://doi.org/10.1080/0020723 3.2019.1579586.
Mohee, R. & Unmar, G. (2007). Determining biodegradability of plastic materials under controlled and natural composting environments. Waste Manag., 27,1486-1493. https://doi.org/10.1016/j.wasman.2006.07.023.
Mourad, A. H. I. (2010). Thermo-mechanical characteristics of thermally aged polyethylene/ polypropylene blends. Mater. Des., 31,918-929. https://doi.org/10.1016/j.mat des.2009.07.031.
Mukherjee, S., Chowdhuri, U. R. & Kundu, P. P. (2016). Bio-degradation of polyethylene waste by simultaneous use of two bacteria: Bacillus licheniformis for production of bio-surfactant and Lysinibacillus fusiformis for bio-degradation. RSC Adv.,6,2982-2992. https://doi.org/10.1039/c5ra25128a.
Mukherjee, S., Roy Chaudhuri, U. & Kundu, P. P. (2018). Biodegradation of polyethylene via complete solubilization by the action of Pseudomonas fluorescens, biosurfactant produced by Bacillus licheniformis and anionic surfactant. J. Chem. Technol. Biotechnol., 93,1300-1311. https://doi.org/10.1002/jctb.5489.
Nourollahi, A., Sedighi-Khavidak, S., Mokhtari, M., Eslami, G. & Shiranian, M. (2019). Isolation and identification of low-density polyethylene (LDPE) biodegrading bacteria from waste landfill in Yazd. Int. J. Environ. Stud., 76,236-250. https://doi.org/10.1080/00207233.2018.1551986.
Novotný,?. Malachová, K., Adamus, G., Kwiecie?, M., Lotti, N., Soccio, M., Verney, V. & Fava, F. (2018). Deterioration of irradiation/high-temperature pretreated, linear low-density polyethylene (LLDPE) by Bacillus amyloliquefaciens. Int. Biodeterior. Biodegrad., 132,259–267. https://doi.org/10.1016/j.ibiod.2018.04.014.
Pathak, V. M. & Kumar, N. (2017). Review on the current status of polymer degradation: a microbial approach. Bioresour. Bioprocess., 4. https://doi.org/10.1186/s40643-017-0145-9.
Sarker, R. K., Chakraborty, P., Paul, P., Chatterjee, A. & Tribedi, P. (2020). Degradation of low-density poly ethylene (LDPE) by Enterobacter cloacae AKS7: a potential step towards sustainable environmental remediation. Arch. Microbiol., 202,2117-2125. https://doi.org/10.1007/s00203-020-01926-8.
Sawiphak, S. & Wongjiratthiti, A. (2021). Optimisation of Culture Conditions for PLA food-packaging Degradation by Bacillus sp. SNRUSA4. Pertanika J. Sci. Technol., 29 (1).
Shah, A. A., Hasan, F., Hameed, A. & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnol. Adv., 26,246-265. https://doi.org/10.1016/j.biotechadv.2007.12.005.
Skariyachan, S., Manjunatha, V., Sultana, S., Jois, C., Bai, V. &Vasist, K. S. (2016). Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene. Environ. Sci. Pollut. Res., 23,18307-18319. https://doi.org/10.1007/s11356-016-7000-y.
Sojak, L., Kubinec, R., Jurdakova, H., Hájeková, E. & Bajus, M. (2006). High resolution gas chromatographic-mass spectrometric analysis of polyethylene and polypropylene thermal cracking products. J. Anal. Appl. Pyrolysis., 78,387-399. https://doi.org/10.1016/j.jaap.2006.0 9.0 12.
Tokiwa, Y., Calabia, B. P., Ugwu, C. U. & Aiba, S. (2009). Biodegradability of plastics. Int. J. Mol. Sci., 10,3722-3742. https://doi.org/10.3390/ijms10093722.
Vague, M., Chan, G., Roberts, C., Swartz, N. A. & Mellies, J. L. (2019). Pseudomonas isolates degrade and form biofilms on polyethylene terephthalate (PET) plastic. BioRxiv., 647321. https://doi.org/10.1101/647321.
Whitman, W. B., Goodfellow, M., Kämpfer, P., Busse H.-J., Trujillo M.E., Ludwig W., Suzuki, K. & Parte A., (1984). Bergey’s Manual of Systematic Bacteriology, Volume 5:The Actinobacteria. New York Springer, ©2012. 1640f. http://books.google.com/books?id=66UMS7A2KisC&pgis=1%0Ahttp://www.springer.com/life+sciences/book/978-0-387-95043-3.
Wolinska, A., Zapasek, M. & Stepniewska, Z. (2016). The optimal TTC dose and its chemical reduction level during soil dehydrogenase activity assay. Acta Agrophys., 23.
Yang, H.S., Yoon, J.S. & Kim, M.N. (2004). Effects of storage of a mature compost on its potential for biodegradation of plastics. Polym. Degrad. Stab., 84,411-417. https://doi.org/10.1016/j.polymdegradstab.2004.01.014.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)