Devendra Kumar Verma Rajdeep Malik Jagram Meena Rashmi Rameshwari


Chitosan as a natural biopolymer has been produced to be the important host for the preparation of metallic nanoparticles (MNPs) because of its excellent characteristics like:- good stabilizing and capping ability, biocompatibility, biodegradability, eco-friendly and non-toxicity properties. Chitosan can play a very important role for synthesis of metallic nanoparticles, as chitosan is a cationic polymer. It attracts metal ions and reduces them and also Capps and stabilizes. So basically chitosan can be responsible for the controlled synthesis of metallic nanoparticle. Chitosan has a very good chelating property. This property is due to its –NH2 and –OH functional groups. Size and shape of metallic nanoparticles are much affected by chitosan concentration, molecular weight, time of reaction, degree of acetylation of chitosan, pH of the medium, method of synthesis and type of derivative of chitosan etc. Metallic nanoparticles`s properties and applications are much associated with their size and shape. Optimization of the metallic nanoparticle size and shape has been the subject of curiosity for nanotechnology scientist. Chitosan can solve this problem by applying the optimization conditions. But a very little work is reported about: - how chitosan can affect the size and shape of metallic nanoparticles and how can it reduce metal salts to prepare metallic nanoparticle, stablilized in chitosan metrics. This is very first report as a review article highlighting the effect of chitosan on synthesis of metallic nanoparticles and optimization conditions. This review will also be beneficial for scientist working on food sensing application of nanoparticles.  Various synthesis methods and applications of chitosan based metallic nanoparticles have also been reported in details.


Download data is not yet available.


Metrics Loading ...




Chitosan, Cationic polymer, Metallic nanoparticles (MNPs), Nanotechnology, Synthesis

AbdElhady, M. M. (2012). Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. International Journal of Carbohydrate Chemistry, 2012, 840591. https://doi.org/10.1155/2012/840591
Abrica-González, P., Zamora-Justo, J.A., Sotelo-López, A. G. R. Vázquez-Martínez, J. A. Balderas-López, A. Muñoz-Diosdado &  M. Ibáñez-Hernández (2019). Gold nanoparticles with chitosan, N-acylated chitosan, and chitosan oligosaccharide as DNA carriers. Nanoscale Research Letters 14, 258.
Ahmad M.B., Tay, M.Y., Shameli, K.,  Hussein, M.Z. &  Lim, J.J. (2011). Green synthesis and characterization of silver/chitosan/polyethylene glycol nanocomposites without any reducing agent. International Journal of Molecular Sciences, 12 (8), 4872-4884. -Doi: 10.3390/ijms12084872
Akbari-Sharbaf, A., Ezugwu, S., Shafiq, M., Cottam M., & Fanchini, G. (2015). Doping graphene thin films with metallic nanoparticles: Experiment and theory. Carbon, 95, 199-207. https://doi.org/10.1016/j.carbon.2015.08.021
Ali, F., Khan, S. B., Kamal, T., Alamry, K. A., & Asiri, A. M. (2018). Chitosan-titanium oxide fibers supported zero-valent nanoparticles: highly efficient and easily retrievable catalyst for the removal of organic pollutants. Scientific Reports, 8(1), 1-18. DOI:10.1038/s41598-018-24311-4
Al-Sayed A. Al-Sherbini, Hala E.A. Ghannam, Gamal M.A. El-Ghanam, Amr. A. El Ella, Ahmed M. Youssef. (2019). Utilization of chitosan/Ag bionanocomposites as eco-friendly photocatalytic reactor for Bactericidal effect and heavy metals removal, Heliyon, 5 (6), e01980, https://doi.org/10.1016/j.heliyon.2019.e01980
Arjunan, N., Kumari, H.L.J., Singaravelu, C.M., Kandasamy, R. & Kandasamy, J. (2016). Physicochemical investigations of biogenic chitosan-silver nanocomposite as antimicrobial and anticancer agent. Int. J. Biol. Macromol. 92, 77–87. 10.1016/j.ijbiomac.2016.07.003.
Badawy, M. E., Lotfy, T. M., & Shawir, S. M. (2019). Preparation and antibacterial activity of chitosan-silver nanoparticles for application in preservation of minced meat. Bulletin of the National Research Centre, 43(1), 83.
Baran, T. (2020). Highly Active and Robust Palladium Nanoparticles Immobilized On Biodegradable Microcapsules Containing Chitosan-Guar Gum Composite for Synthesis of Biaryl Compounds. Konya MühendislikBilimleri Dergisi, 8(1), 113-121. DOI:10.36306/konjes.698694
Broujeni B.R., Nilchi, A., Hassani, A.H.  & Saberi, R. (2018). Preparation and characterization of chitosan/Fe2O3 nano composite for the adsorption of thorium (IV) ion from aqueous solution.  Water Science and Technology, 78(3), 708-720. https://doi.org/10.2166/wst.2018.343
Chattopadhyay, S., Dash, S. K., Mahapatra, S. K., Tripathy, S., Ghosh, T., Das, B., Panchanan P. & Roy, S. (2014). Chitosan-modified cobalt oxide nanoparticles stimulate TNF-?-mediated apoptosis in human leukemic cells. JBIC Journal of Biological Inorganic Chemistry, 19(3), 399-414. https://doi.org/10.1007/s00775-013-1085-2
Choudhary, R. C., Kumaraswamy, R. V., Kumari, S., Sharma, S. S., Pal, A., Raliya, R. and Saharan, V (2019). Zinc encapsulated chitosan nanoparticle to promote maize crop yield. International Journal of Biological Macromolecules, 127, 126-135.
He, Y., Wu, P., Xiao, W., Li, G., Yi, J., He, Y. & Duan, Y. (2019). Efficient removal of Pb (II) from aqueous solution by a novel ion imprinted magnetic biosorbent: Adsorption kinetics and mechanisms. PloSOne, 14(3). https://doi.org/10.1371/journal.pone.0213377
Dung, D.T.K., Hai,T.H., Phuc, L.H., Long, B.D., Vinh L.K. &  Truc P.N. (2009). Preparation and characterization of magnetic nanoparticles with chitosan coating. Journal of Physics: Conference Series. IOP Publishing, 187 (1), 012036.
Ehmann, H.M.A., Breitwieser, D., Winter, S., Gspan, C., Koraimann, G., Maver, U., Sega, M., Köstler, S., Stana-Kleinschek, K., Spirk, S. & Ribitsch, V. (2015). Gold nanoparticles in the engineering of antibacterial andanticoagulant surfaces. Carbohydrate Polymer, 117, 34–42. https://doi.org/10.1016/j.carbpol.2014.08.116
Fan, H. L., Zhou, S. F., Jiao, W. Z., Qi, G. S., & Liu, Y. Z.(2017). Removal of heavy metal ions by magnetic chitosan nanoparticles prepared continuously via high-gravity eactive precipitation method. Carbohydrate polymers, 174, 2017, 1192-1200. https://doi.org/10.1016/j.carbpol.2017.07.050
Ghasemzadeh, H., Mahboubi, A., Karimi, K. & Hassani, S. (2016). Full polysaccharide chitosan-CMC membrane and silver nanocomposite: Synthesis, characterization, and antibacterial behaviors. Polymers Advanced Technology, 27, 1204–1210. https://doi.org/10.1002/pat.3785
Gupta, D., Singh, D., Kothiyal, N.C., Saini, A.K., Singh, V.P. & Pathania, D. (2015). Synthesis of chitosan-gpoly(acrylamide)/ZnS nanocomposite for controlled drug delivery and antimicrobial activity. Intenational Journal of Biologicla Macromolecules. 74, 547–557. https://doi.org/10.1016/j.ijbiomac.2015.01.008
Guzman, J., Saucedo, I., Navarro, R., Revilla, J. & Guibal, E. (2002). Vanadium interactions with chitosan: Influence of polymer protonation and metal speciation. Langmuir, 18(5), 1567-1573. https://doi.org/10.1021/la010802n
Honary, S., K Ghajar, K., Khazaeli, P. & Shalchian, P.(2011). Preparation, Characterization and Antibacterial Properties of Silver-Chitosan Nanocomposites Using Different Molecular Weight Grades of Chitosan, Tropical Journal of Pharmaceutical Research, 10 (1): 69-74. DOI: 10.4314/tjpr.v10i1.66543
Huang, X., Jain, P.K., El-Sayed, I.H., El-Sayed, M.A. (2008). Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 23, 217–228. https://doi.org/10.1007/s10103-007-0470-x
Huo, M., Zhang, Y., Zhou, J., Zou, A., Yu, D., Wu, Y., Li, J. & Li, H. (2010). Synthesis and characterization of low toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumor drug. International Journal of Pharmaceutics, 394(1–2), 162–173. https://doi.or g/10.1016/j.ijpharm.2010.05.001
Javed, R., Zia, M., Naz, S., Aisida, S.O.,  Ain, N.A. &  Ao, Q. (2020).  Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. Journal of Nanobiotechnology, 18, 172. https://doi.org/10.1186/s12951-020-00704-4
Kamal, T., Khan, S.B., & Asiri, A.M. (2016). Nickel nanoparticles-chitosan composite coated cellulose filter paper: an efficient and easily recoverable dip-catalyst for pollutants degradation.  Environmental Pollution, 218, 625-633. https://doi.org/10.1016/j.envpol.2016.07.046
Khedri B., Shahanipour, K.,  Fatahian, S., &   Jafary F. (2018). Preparation of chitosan-coated Fe3O4 nanoparticles and assessment of their effects on enzymatic antioxidant system as well as high-density lipoprotein/low-density lipoprotein lipoproteins on wistar rat. Biomedical and Biotechnology Research Journal (BBRJ), 2(1), 68-73. DOI: 10.4103/bbrj.bbrj_98_17
Kumar S., Bhushan P., Bhattacharya S. (2018) Positively Charged Silver Nanoparticles as Labels for Paper-Based Colorimetric Detection of Heparin. In: Ibrahim F., Usman J., Ahmad M., Hamzah N., Teh S. (eds) 2nd International Conference for Innovation in Biomedical Engineering and Life Sciences. ICIBEL 2017. IFMBE Proceedings, vol 67. Springer, Singapore. https://doi.org/10.1007/978-981-10-7554-4_41.
Kyzas, G.Z. & Deliyanni, E.A. (2013). Mercury (II) removal with modified magnetic chitosan adsobents. Molecules, 18(6), 6193 - 6214.https://doi.org/10.3390/molecules18066 193
León, Y., Cárdenas, G. & Arias, M. (2017). Synthesis and characterizations of metallic nanoparticles in chitosan by chemical reduction. Journal of the Chilean Chemical Society, 62(4), 3760-3764. http://dx.doi.org/10.4067/s0717-9707017000403760  
Lin, Y.C., Tan, F.J., Marra, K.G., Jan, S.S. & Liu, D.C.(2009). Synthesis and characterization of collagen/hyaluronan/chitosan compositesponges for potential biomedical applications.  ActaBiomaterialia,  5 (7), 2591-2600. https://doi.org/10.1016/j.actbio.2009.03.038
Liu, E., Zheng, X., Xu, X., Zhang, F., Liu, E., Wang, Y. & Yan, Y.(2017). Preparation of diethylenetriamine - modified magnetic chitosan nanoparticles for adsorption of rare-earth metal ions.  New Journal of Chemistry, 41 (15), 7739-7750. https://pubs.rsc.org/en/content/articlelandin g/2017/nj/c7nj02177a#!divAbstract
Liu, X., Cheng, H. & Cui. P. (2014). Catalysis by silver nanoparticles/porous silicon for the reduction of nitroaromatics in the presence of sodium borohydride. Applied Surface Science. 292, 695-701.
Lupusoru, R.V., Simion, L., Sandu, I., Pricop, D.A., Chiriac, A.P., Poroch, V. (2017). Aging Study of Gold Nanoparticles Functionalized with Chitosan in Aqueous Solutions. Revista De Chimie. 2017, 68(10), 2385–2388. DOI:10.37358/RC.17.10.5891
Ma Y., Zhou, T., & Zhao, C. (2008). Preparation of chitosan–nylon-6 blended membranes containing silver ions as antibacterial materials. Carbohydrate research, 343(2), 230-237. https://doi.org/10.1016/j.carres.2007.11.006
Manikandan, A., & Sathiyabama, M. (2015). Green synthesis of copper-chitosan nanoparticles and study of its antibacterial activity. Journal of Nanomedicine & Nanotechnology, 6(1), 1-5. DOI: 10.4172/2157-7439.1000251
Marpu, S. B., & Benton, E. N. (2018). Shining light on chitosan: a review on the usage of chitosan for photonics and nanomaterials research. International Journal of Molecular Sciences, 19(6), 1795. DOI: 10.3390/ijms19061795.
Meng, Y., Chen, D., Sun, Y., Jiao, D., Zeng, D., & Liu, Z. (2015). Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method. Applied Surface Science, 324, 745-750.
Misra, N., Rapolu, M., Rao, S., Varshney, L. & Kumar, V.(2016). Nonlinear optical studies of inorganic nanoparticles –polymer nanocomposite coatings fabricated by electron beam curing. Optics & Laser Technology, 79, 24-31. https://doi.org/10.1016/j.optlastec.2015.11.004
Pina, S., Oliveira, J. M. & Reis, R. L. (2015). Natural?based nanocomposites for bone tissue engineering and regenerative medicine: A review. Advanced Materials, 27(7), 1143-1169. https://doi.org/10.1002/adma.20140 3354
Potara, M., Maniu, D. & Astilean, S. (2009). The Synthesis of Biocompatible and SERS-Active Gold Nanoparticles using Chitosan. Nanotechnology, 20, 1–7. DOI: 10.10 88/0957-4484/20/31/315602
Sannegowda, K., Shambhulinga, A., Manjunatha, N., Imadadulla, M. & Hojamberdiev, M. (2015). Porphyrin macrocycle-stabilized gold and silver nanoparticles and their application in catalysis of hydrogen peroxide. Dyes and Pigments, 120, 155-160. https://doi.org/10.1016/j.dyepig.2015.04.002
Sanpui, P., Murugadoss, A., DurgaPrasad, P.V., Sankar Ghosh, S., Chattopadhyay, A., (2008). The antibacterial properties of a novel chitosan–Ag-nanoparticle composite.  International Journal of Food Microbiology, 124(2), 142-146. https://doi.org/10.1016/j.ijfoodmicro.2008.03.004
Santos, H.H., Demarchi, C.A., Rodrigues, R.C., Greneche J.M., Nedelko, N., Waniewska, A.S. (2011). Adsorption of As (III) on chitosan-Fe-crosslinked complex (Ch-Fe). Chemosphere, 82(2), 278–283. https://doi.org/10.1016/j.chemosphere.2010.09.033
Sengupta, S., Eavarone, D., Capila, I., Zhao, G., Watson, N., Kiziltepe, T. Sasisekharan, R. (2005). Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature, 436, 568–572.
Seyed Dorraji, M. S., Mirmohseni, A., Tasselli, F., Criscuoli, A., Carraro, M., Gross, S. & Figoli, A. (2014). Journal of Polymer Research, 21(4), 399–412.
Tahir, S. K., Yousaf, M. S., Ahmad, S., Shahzad, M. K., Khan, A. F., Raza, M. & Rehman, H. (2019). Effects of Chromium-Loaded Chitosan Nanoparticles on the Intestinal Electrophysiological Indices and Glucose Transporters in Broilers. Animals, 9(10), 819. doi: 10.3390/ani9100819
Thaya, R., Malaikozhundan, B., Vijayakumar, S., Sivakamavalli, J., Jeyasekar, R., Shanthi, S., Vaseeharan, B., Ramasamy, P. & Sonawane, A. (2016). Chitosan coated Ag/ZnO nanocomposite and their antibiofilm, antifungal and cytotoxic effects on murine macrophages. Microbial Pathogenesis. 100, 124–132. https://doi.org/10.1016/j.micpath.2016.09.010
Thinh, N.N., Hanh, P.T., Ha, L.T.T., Anh, L.N., Hoang, T.V., Hoang, V.D., Dang, L.H., Khoi, N.V. & Lam. T.D. (2013). Material Science and Engineering C-Material, 33, 1214–1218.
Thirumavalavan, M., Yang, F.M. & Lee, J.F. (2013). Investigation of preparation conditions and photocatalytic efficiency of nano ZnO using different polysaccharides. Environmental Science and Pollution Research, 20, 5654–5664. https://doi.org/10.1007/s11356-013-1575-3
Tran, H.V., Tran, L.D., Ba, C.T., Vu, H.D., Nguyen, T.N., Pham, D.G. & Nguyen, P.X. (2010). Synthesis, characterization, antibacterial and antiproliferative activities of monodisperse chitosan- based silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 360(1-3), 32–40. https://doi.org/10.1016/j.cols urfa.2010.02.007
Vo, K.D.N., Guillon, E., Dupont, L., Kowandy, C. & Coqueret, X. (2014). Influence of Au (III) interactions with chitosan on gold nanoparticle formation. The Journal of Physical Chemistry C, 118(8), 4465-4474. https://doi.org/10.1021/jp4112316
Wang, C.,  Gao, X.,  Chen, Z.,  Chen, Y. &  Chen H. (2017a). Preparation, characterization and application of polysaccharide-based metallic nanoparticles: a review. Polymers, 9(12), 689.  doi: 10.3390/polym9120689
Wang, Y. Kong, Q., Ding, B., Chen, Y., Yan, X., Wang, S., Chen, F., You, J. & Li, C. (2017b). Bio inspired catechetic activation of marine chitin for immobilization of Ag nanoparticles as recyclable pollutant nanocatalysts. J. Colloid Interface Sci. 2017, 505, 220–22. https://doi.org/10.1016/j.jcis.2017.05.099
Wen, Y., Ma, J., Chen, J., Shen, C., Li, H. & Liu, W. (2015). Carbonaceous sulfur-containing chitosan–Fe(III): A novel adsorbent for efficient removal of copper (II) from water, Chemical Engineering Journal, 259, 372–380.
Worthington, K.L.S., Adamcakova-Dodd, A., Wongrakpanich, A., Mudunkotuwa, I.A., Mapuskar, K.A., Joshi, V.B., Allan Guymon, C., Spitz, D.R., Grassian, V.H. Thorne, P.S. (2013). Chitosan coating of copper nanoparticles reduces in vitro toxicity and increases inflammation in the lung. Nanotechnology, 24, 395101. doi: 10.1088/0957-4484/24/39/395101.
Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine drugs, 13(3), 1133-1174. DOI: 10.3390/md13031133
Yu, Z., Zhang, X. & Huang, Y. (2013). Magnetic Chitosan–Iron(III) Hydrogel as a Fast and Reusable Adsorbent for Chromium(VI) Removal. Industrial and Engineering Chemistry Research, 52, 11956–11966.
Zang, L., Qiu, J., Wu, X., Zhang, W., Sakai, E. & Wei, Y. (2014). Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Industrial & engineering Chemistry Research 53(9), 3448-3454. https://doi.org/10.1021/ie404072s
Zeinali, S., Nasirimoghaddam S., & Sabbaghi, S. (2016). Investigation of the synthesis of chitosan coated iron oxide nanoparticles under Different Experimental Conditions. Interational Journal of Nanoscience and Nanotechnology, 12 (3), 183-190. http://www.ijnnonline.net/article_2173 1.html
Zimmermann A.C., Mecabo, A., Fagundes, T. & Rodrigues, C.A. (2010). Adsorption of Cr(VI) using Fe-crosslinked chitosan complex (Ch-Fe), Journal of Hazardous Materials, 179,192–196. https://doi.org/10.1016/j.jhaz mat.2010.02.078
Citation Format
How to Cite
Verma , D. K., Malik , R. ., Meena, J. ., & Rameshwari, R. . (2021). Synthesis, characterization and applications of chitosan based metallic nanoparticles: A review. Journal of Applied and Natural Science, 13(2), 544 - 551. https://doi.org/10.31018/jans.v13i2.2635
More Citation Formats:
Research Articles

Most read articles by the same author(s)