Article Main

Ashu Singh Pradeep Kumar Shukla R. S. Sengar Pragati Mishra

Abstract

Water stress is one of the foremost categories of stress damaging plants’ overall growth and development. The aim of the
present study was to explore and demonstrate stress-induced drought to calibrate changes in stress parameters of two banana plant varieties viz. Grand naine (G9)  and Nalla bontha were cultured in Murashige and Skoog medium (MS) media supplemented with stress inducers -Poly ethylene glycol (PEG)  and sorbitol. The different concentrations of inducers were used to induce drought stress in two varieties of banana with contrasting characters for drought condition. The study indicated that PEG contrived mild to moderate osmotic stress and so does the alditol i.e. sorbitol on in vitro banana plants.  The different concentrations of PEG and sorbitol produced significant effects on various parameters. The maximum decrease in shoot length was prominent in G9(52%) as compared to Nalla bontha (11%). When treated with 3% w/v sorbitol, even average root length showed the same level of damage with G9(59%) while in case of Nalla bontha there  was  a 17% decrease. The banana plantlet produced in vitro was estimated at one and two weeks after inoculation, respectively. Proline content tended to increase as the concentration of osmotic inducers increased (-44 % in G9 at 3% w/v sorbitol), whereas RWC (8.9% in G9 at 3% w/v Peg) showed an opposite effect. It was concluded that quantitative and qualitative changes in physiological (shoot and root length) and biochemical (Proline and relative water content, RWC) parameters played an important role in plants under drought stress conditions. This pattern varied from species to species. This work has been attempted for the first time in banana, especially Grand naine varieties with contrasting characters under induced drought stress. 

Article Details

Article Details

Keywords

Banana, Drought tolerance, Oxidative damage, RWC, Proline, Stress, Sorbitol

References
Al-Khateeb, A. (2008). Regulation of in vitro bud formation of date palm (Phoenixdactylifera L.) cv. Khanezi by different carbon sources. Bioresource Techno., 99,6550-6555. https://doi.org/10.1016/j.biortech.2007.11.070
Anber, M.A.H. (2010). Establishment of efficient in vitro method for drought tolerance evaluation in Pelargonium. Journal of Horticultural Science & Ornamental Plants, 2(1), 8-15.
Anjum, S.A., Xie, X., Wang, L., Saleem, M.F., Man, C. & Lei, W. (2015). Morphological, physiological and biochemical responses of plants to drought stress. Acta Physiol. Plant., 37.  https://doi.org/10.5897/AJAR10.027
Barbara, P., Kaminskai, I. & Rybinski, W. (2014). Influence of PEG generated osmotic stress on shoot regeneration and some biochemical parameters in Lathyrus culture. Czech J. Genet. Plant Breed., 50 (2), 77-83. https://doi.org/10.17221/110/2013-CJGPB
Basu, S., Ramegowda, V., Kumar, A. &Pereira, A. (2016). Plant adaptation to drought stress. F1000Research, 23,5. https://doi.org/10.12688/f1000research.7678.1
Bisht, A., Singh, R., Gangwar, A., Singh, O. P. (2015). Export of Fruits from India: Growth, Pattern and SPS Issues. Economic Affairs, 60(2):339.
Barrs, H. D., & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian journal of biological sciences, 15(3), 413-428. http://dx.doi.org/10.1071/BI9620413
Bates, L.S., Waldren, R.P. & Teare, J. D. (1973). Rapid determination of free proline for water use studies. Plant and Soil., 39, 205–208. https://doi.org/10.1007/BF00018060
Bikram, P. & Bandita, D. (2019). Detection of phytochemicals and in vitro propagation of Banana (Musa variety Gaja Bantal). Journal of Medicinal Plants Studies, 7(1), 46-49.
Bray, E.A. (2002). Classification of genes differentially expressed during water deficit stress in Arabidopsis thaliana: an analysis using Microarray and differential expression data. Annals of Botany. 89, 803–811. https://doi.org/10.1093/aob/mcf104
Cochard, H., Barigah, S., Kleinhentz, M. & Eshel, A. (2008). Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species. J. Plant Physiol.,165, 976-982. DOI: 10.1016/j.jplph.2007.07.020
Cuenca, B., & Vieitez, A. (2000). Influence of carbon source on shoot multiplication and adventitious bud regeneration in in vitro beech cultures. Plant Growth Regul., 32:1-12. https://doi.org/10.1023/A:1006329510280
Darko, E., Végh, B., Khalil, R., Mar?ek, T., Szalai, G., Pál, M., & Janda, T. (2019). Metabolic responses of wheat seedlings to osmotic stress induced by various osmolytes under iso-osmotic conditions. PloS one, 14(12): e0226151. https://doi.org/10.1371/journal.pone.0226151
de Paiva Neto V.B., & Otoni, W.C. (2003). Carbon sources and their osmotic potential in plant tissue culture: Does it matter? Sci. Hortic., 97:193- 202 https://doi.org/10.1016/S0304-4238(02)00231-5
Eglal, M.S., Rania, M.A., Rana, A.A., Astin, G.S. (2015). Drought stress tolerance and enhancement of banana plantlets in vitro. Journal of Biotechnology and Bioengineering, 2(2),1-7.
Food and Agricultural Organization (2019). FAOSTAT Food and Agricultural Organization (FAO). Retrieved from: http:// http://www.fao.org/faostat/en/?#data/QC. Accessed on Sat May 04 14:9:42 EAT 2019
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A. (2009). Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev., 29:185–212. https://doi.org/10.1051/agro:2008021
Gopal, J., & Iwama, K. (2007). In vitro screening of potato against water stress mediated through sorbitol and polyethylene glycol. Plant cell rep., 26,693-700. https://doi.org/10.1007/s00299-006-0275-6
Hajihashemi, S., & Sofo, A. (2018). The effect of polyethylene glycol-induced drought stress on photosynthesis, carbohydrates and cell membrane in Stevia rebaudiana grown in greenhouse. Acta Physiologiae Plantarum, 40(8):1-9. https://doi.org/10.1007/s11738-018-2722-8.
Jaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, J., Somasundaram, R., Panneerselvam, R. (2009). Drought Stress in Plants: A Review on Morphological Characteristics and Pigments Composition. Int. J. Agric. Biol., 11:7. https://doi.org/08–305/IGC-DYT/2009/11–1–100–105
Karhu, S.T. (1997). Sugar use in relation to shoot induction by sorbitol and cytokinin in apple. Am. Soc. Hortic. Sci.,122, 476-480. https://doi.org/10.21273/JASHS.12 2.4.476
Kato, Y., Abe, J., Kamoshita, A., Yamagishi, J. (2006). Genotypic variation in root growth angle in rice (Oryza sativa L.) and its association with deep root development in upland fields with different water regimes. Plant Soil., 287,117-129. http://dx.doi.org/10.1007/s11104-006-9008-4
Khan, S., Anwar, S., Yu, S., Sun, M., Yang, Z., & Gao, Z. Q. (2019). Development of drought-tolerant transgenic wheat: achievements and limitations. International journal of molecular sciences, 20(13),33-50.
Kulkarni, M., & Phalke, S. (2009). Evaluating variability of root size system and its constitutive traits in hot pepper (Capsicum annum L.) under water stress. Sci. Hortic., 120, 159-166. https://doi.org/10.1016/j.scienta.200 8.10.007
Lafitte, H., Price, A., Courtois, B. (2004). Yield response to water deficit in an upland rice mapping population: Associations among traits and genetic markers. Theor. Appl. Genet., 109,1237-1246. https://doi.org/10.1007/s00122-004-1731-8
Matheka J.M., E. Magiri, A.O. Rasha and J. Machuka, (2008). In vitro Selection and Characterization of Drought Tolerant Somaclones of Tropical Maize (Zea mays L.). Biotechnology, 7, 641-650. 10.3923/biotech.20 08.641.650
Markesteijn, L., and Poorter, L. (2009). Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought and shade tolerance. J. Ecol., 97, 311-325.https://doi.org/10.1111/j.1365-2745.2008.0146 6.x
Mello, M., Dias, C.T.S., Amaral, A.F.C., Melo, M. (2001). Growth of Bauhiniaforficata Link, Curcuma zedoaria Roscoe and Phaseolus vulgaris L. cell suspension cultures with carbon sources. Sci. Agric., 58:481-485. https://doi.org/10.1590/S0103-90162001000300007
Mohamed, M.A.H., Harris, P.J.C., Henderson, J. (2000). In vitro selection and characterization of a drought tolerant clone of Tagetes minuta. Plant Sci.,159: 213-222. http://dx.doi.org/10.1016/S0168-9452(00)00339-3
Placide, R., Christian, C.S., Rony, R. (2012). Development of in vitro technique to screen for drought tolerant banana varieties by sorbitol induced osmotic stress. African Journal of Plant Science, 6, 416-425.  https://doi.org/10.5897/AJPS12.101
Ober, E.S. & Sharp, R.E. (2003) Electrophysiological Responses of Maize Roots to Low Water Potentials: Relationship to Growth and ABA Accumulation. Journal of Experimental Botany, 54,813-824. https://doi.org/10.1093/jxb/erg060
Ravi, I., Uma, S., Vaganan, M.M., Mustaffa, M.M. (2013). Phenotyping bananas for drought resistance. Frontiers in Physiology, 1, 82-123. https://doi.org/10.3389/fphys.201 3.00009
Rukundo, P., Carpentier, S.C., Swennen, R. (2012). Development of in vitro technique to screen for drought tolerant banana varieties by sorbitol induced osmotic stress. African Journal of Plant Science. 6(15), 416-425. https://doi.org/10.5897/AJPS12.101
Singh, D., Kaur, S. & Kumar, A. (2020). In vitro drought tolerance in selected elite clones of Eucalyptus tereticornis Sm., Acta Physiol Plant 42,17. https://doi.org/10.1007/s11738-019-3009-4.
Shao, H.B., Chu, L.Y., Jaleel, C.A., Manivannan, P., Panneerselvam, R., Shao, M.A. (2009). Understanding water deficit stress-induced changes in the basic metabolism of higher plants—Biotechnologically and sustainably improving agriculture and the eco-environment in arid regions of the globe. Crit. Rev. Biotechnol., 29:31–151. doi: https://doi.org/10.1080/07388550902869792
Sharma, A., Kumar, V., Shahzad, B., Ramakrishnan, M., Sidhu, G. P. S., Bali, A. S., & Zheng, B. (2019). Photosynthetic response of plants under different abiotic stresses: a review. Journal of Plant Growth Regulation, 1-23. https://doi.org/10.1007/s00344-019-10018-x
Trenberth, K.E., Dai, A., Van der Schrier, G., Jones, P.D., Barichivich, J., Briffa, K.R., Sheffield, J. (2014). Global warming and changes in drought. Nat. Clim. Chang., 4, 17–22. https://doi.org/10.1038/nclimate2067
Vanhove, A.C., Vermaelen W., Panis B., Swennen, R., Carpentier, S.C. (2012). Screening the banana biodiversity for drought tolerance: can an in vitro growth model and proteomics be used as a tool to discover tolerant varieties and understand homeostasis. Front. Plant Sci., 3, 176. https://doi.org/10.3389/fpls.2012.00176
Wilhite, A.S., & Donald A. (1993). Drought assessment, management, and planning: theory and case studies. Springer Publication, Boston. ISBN 978-1-4613-6416-0.
Xiong, L, Wang, R.G., Mao, G., Koczan, J.M. (2006). Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol., 142, 1065-1074. doi: https://doi.org/10.1104/pp.10 6.0 846 32.
Yadav, P.V., Suprasanna, P., Gopalrao, K.U., Anant, B.V. (2006). Molecular profiling using RAPD technique of salt and drought tolerant regenerants of sugarcane. Sugar Technol., 8, 63-68. https://doi.org/10.1007/BF02943744
Zhang, Q. (2007). Strategies for developing Green Super Rice. Proc. Natl. Acad. Sci. USA, 104:16402–16409. https://doi.org/10.1073/pnas.0708013104
Zhang, X., Lu, G., Long, W., Zou, X., Li, F., Nishio, T. (2014). Recent progress in drought and salt tolerance studies in Brassica crops. Breed. Sci., 64,60–73. DOI https://doi.org/10.1270/jsbbs.64.60
Zhao, T., & Dai, A. (2015). The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. Journal of climate, 28(11),4490-4512.doi: https://doi.org/10.1175/JCLI-D-14-003 63.1
Section
Research Articles

How to Cite

In vitro effect of polyethylene glycol and sorbitol on two banana varieties viz. Grand naine and Nalla bontha to study drought stress. (2021). Journal of Applied and Natural Science, 13(2), 482-490. https://doi.org/10.31018/jans.v13i2.2579