V. Bebi P. Reddy Prasad K. Sudheer P. Sandhya C. Nageswara Reddy N. Y. Sreedhar


Glassy carbon electrode modified sensitive Pd-CuO/MWCNTs electrochemical nanosensor was used for detection of ametridione pesticide in water samples. The morphology characteristics of Pd-CuO/MWCNTs are examined by scanning electron microscopy and EDX. The ametridione pesticide under voltammetric investigation involves irreversible, 4e? electron reduction based on the protonation of the two carbonyl groups (>C=O). The voltammetric method was applied for the detection of ametridione in BR buffer solution at pH 5.0 as a supporting electrolyte. The detection limit, limit of quantification and concentration ranges of the proposed method were 0.0796 ?g?mL?1 (signal/noise=3), 0.5560 ?g?mL?1 and 0.1 to 10.0 ?g?mL?1, respectively. The electrochemical sensor was successfully applied for the detection of ametridione in tap, agricultural run-off and river water samples showing >98% mean recoveries.






Ametridione, CuO, Morphology, Pesticide, Sensor

Baghayeri, M., Amirhassan, A., Maryam, F., Marzieh, N. & Ali, E. (2021). Electrochemical detection of bisphenol a on a MWCNTs/CuFe2O4 nanocomposite modified glassy carbon electrode. Materials Chemistry and Physics, 261, 124247. https://doi.org/10.1016/j.matchemphys.2021.124 247.
Beckie, H.J., Harker, K.N., Hall, L.M., Warwick, S.I., Legere, A., Sikkema, P.H., Clayton, G.W., Thomas, A.G., Leeson, J.Y., Seguin-Swartz, G. & Simard, M.J. (2006). A decade of herbicide-resistant crops in Canada. Canadian Journal of Plant Science, 86,1243-1264. https://doi.org/1 0.4141/P05-193.
Ben Ali Hassine, C. & Barhoumi, H. (2018). Electrochemical study of a glassy carbon electrode modified by poly-4-nitroaniline-reduced/murexide and its sensitivity for metal ions. Analytical Biochemistry, 560, 30-38. https://doi.org/1 0.1016/j.ab.2018.08.023.
Bhvimane, S.J., Mruthyunjayachari, C.D., Malathesh, P., Mounesh, P., Sharankumar, T.M. & Venugopala Reddy, K.R. (2019). Electrochemical sensing based MWCNT-Cobalt tetra substituted sorbaamide phthalocyanine onto the glassy carbon electrode towards the determination of 2-Amino phenol: A voltammetric study, Sensors and Actuators B: Chemical, 301, 127078. https://doi.org/10.1016/j.sn b.2019.127078.
Brahim, M.B., Elahmadi, M.F., Ammar, H.B. & Samet, Y. (2018) Determination of ultra-trace amounts of neonicotinoid insecticide imidacloprid by cyclic and square wave voltammetric methods using pretreated glassy carbon electrode. Glob. Nest J. 20, 628-636. https://doi.org/10.30 955/gnj.002509.
Canevari, T.C., Prado, T.M., Cincotto, F.H. & Machado, S.A.S. (2016) Immobilization of ruthenium phthalocyanine on silica-coated multi-wall partially oriented carbon nanotubes: Electrochemical detection of fenitrothion pesticide. Mater. Res. Bull. 76, 41–47, http://dx.doi.org/10.1016/j.ma terresbull.2015.12.007.
Choudhury, P.P., Singh, R., Ghosh, D. & Sharma, A.R. (2016). Herbicide use in Indian agriculture. ICAR-Directorate of Weed Research, Jabalpur, Madhya Pradesh, 110.
Costa, D.J.E., Santos, J.C.S., Sanches-Brando, F.A.C., Ribeiro, W.F., Salazar-Banda, G.R. & Araujo, M.C.U. (2017). Boron-doped diamond electrode acting as a voltammetric sensor for the detection of methomyl pesticide, Journal of Electroanalytical Chemistry, 789, 100-107. https://doi.org/10.1016/j.jelechem.2017.02.036.
Dan, Du., Xiaxue, Ye., Jie, Cai., Juan, Liu. & Aidong, Z. (2010). Acetylcholinesterase biosensor design based on carbon nano tube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates, Biosens. Bioelectron., 25, 2503-2508. https://doi.o rg/10.1016/j.bios.2010.04.018.
Esmail, S., Amir, H.K., Shahdost-fard, F., Ebrahim, N., Plonska-Brzezinska, M.E., Rahimi-Nasrabadi, M. & Farhad, A. (2020). A glassy carbon electrode modified with carbon nanoonions for electrochemical determination of fentanyl, Materials Science and Engineering, C, 110, 110684. https://doi.org/10.1016/j.msec.2020.110684.
Forouzesh, A., Zand, E., Soufizadeh, S. & Foroushani, S.S. (2015). Classification of herbicides according to chemical family for weed resistance management strategies – an update. European Weed Research Society, 55, 334-358. https://doi.org/10.1111/wre.12153.
Gamze, E. & Ersin karagozler, A. (1997). Investigation and comparison of the electrochemical behaviour of some organic and biological molecules at various conducting polymer electrodes, Talanta 44, 2011-2018. https://doi.o rg/10.1016/S0039-9140(96)02196-0.
Gonçalves-Filho, D., Gonçalves Silva, C.C. & De Souza, D. (2020). Pesticides determination in foods and natural waters using solid amalgam-based electrodes: Challenges and trends, Talanta, 212, 120756. https://doi.org/10.1016/j.talanta.2020.120756.
Guzsvany, V.J., Gaal, F.F., Bjelica, L.J. & Okresz, S.N. (2005). Voltammetric determination of imidacloprid and thiamethoxam. J. Serbian Chem. Soc., 70, 735–743. https://doi.org/10.2298/JSC0505735G.
Ha, T.J., Hong, M.H., Park, C.S. & Park, H.H. (2013). Gas sensing properties of ordered mesoporous TiO2 film enhanced by thermal shock induced cracking. Sens. Actuator B Chem, 181, 874-879. https://doi.org/10.1016/j.snb.2 013.02.093.
Jian-Chun, Ma. & Wei-De, Z. (2011). Gold nanoparticle-coated multiwall carbon nanotube-modified electrode for electrochemical determination of methyl parathion, Microchim Acta, 175, 309–314. https://doi.org/10.1007/s00604-011-0681-5.
Khadem, M., Fardbod, F., Norouzi, P., Abbas Rahimi, F., Mohammad Reza, G., Rasoul, Y. & Seyed, J.S. (2020). Voltammetric determination of carbofuran pesticide in biological and environmental samples using a molecularly imprinted polymer sensor, a multivariate optimization, Journal of Analytical Chemistry, 75 (5), 669-678. https://doi.org/10.1134/S1061934820050068.
Kniss, A.R. (2017). Long-term trends in the intensity and relative toxicity of herbicide use, Nature Communications, 8 (14865), 1-7. https://doi.org/10.1038/ncomms14865.
Koksoy, B., Akyuz, D., Senocak, A., Durmus, M. & Demirbas, E. (2021). Sensitive, simple and fast voltammetric determination of pesticides in juice samples by novel BODIPY-phthalocyanine-SWCNT hybrid platform, Food and Chemical Toxicology, 147, 1118886. https://doi.org/10.1016/j.fct.2020.111886.
Legere, A., Beckie, H.J., Stevensorn, F.C. & Thomas, A.G. (2000). Survey of management practices affecting the occurrence of wild oat (Avena fatua) resistance to acetyl-CoA carboxylase inhibitors. Weed Technology 14, 366-376. https://doi.org/10.1614/0890-037X(2000)014[036 6:SOMPAT]2.0.CO;2.
Nasrollahzadh, M. (2016). Pd/CuO nanoparticles as a highly effective catalyst for the cyanation of aryl halides under ligand-free conditions. Tetrahedron Letters, 57(3):337-339. https://doi.org/10.1016/j.tetlet.2015.12.019.
Papp, Z., Svancara, I., Guzsvany, V., Vytras, K. & Gaal, F. (2009). Voltammetric determination of imidacloprid insecticide in selected samples using a carbon paste electrode. Microchim. Acta, 166, 169–175. https://doi.org/10.1007/s0 0604-009-0181-z.
Pourakbari, Z., Aliakbar, A. & Sheykhan, M. (2020). A metal-catex composite electrode for determination of paraquat in various samples by Ad-differential pulse cathodic stripping voltammetry, Talanta 212, 120793. https://doi.or g/10.1016/j.talanta.2020.120793.
Rayburn, A. L., Moody, D.D. & Freeman, J.L. (2005). Cytotoxicity of technical grade versus formulations of atrazine and acetochlor using mammalian cells. Bulletin of Environmental Contamination and Toxicology, 75(4), 691–698. https://doi.org/10.1007/s00128-005-0807-8.
Rich, J.D., Gabriel, S.M. & Schultz-Norton, J.R. (2012). In vitro effects of herbicides and insecticides on human breast Cells. International Scholarly Research Notices, 2012, 1-9. https://doi.org/10.5402/2012/232461.
Salehzadeh, H., Ebrahimi, M., Nematollahi, D. & Salarian, A.A. (2016). Electrochemical study of fenitrothion and bifenox and their simultaneous determination using multiwalled carbon nanotube modified glassy carbon electrode. J. Electroanal. Chem. 767, 188–194, http://dx.doi.org/1 0.1016/j.jelechem.2016.02.011.
Selim, H.M. (2003). Retention and runoff losses of atrazine and metribuzin in soil. Journal of Environmental Quality, 32(3), 1058–1071. https://doi.org/10.2134/jeq2003.10 58.
Sephenson, G.R., Dykstra, M.D., Mclaren, R.D. & Hamill, A.S., (1990). Agronomic practices influencing triazine-resistant weed distribution in Ontario. Weed Technology, 4(1), 199-207. https://doi.org/10.1017/S0890037X0002 52 27.
Sira, L.R., de Lima, F., Cardoso, C.A.I. & Arruda, G.J. (2015). Electrochemically pretreated zeolite-modified carbon-paste electrodes for determination of linuron in an agricultural formulation and water. Electrochemica Acta, 151, 609-618. https://doi.org/10.1016/j.electact a.2014.1 1.008.
Subbalaskhmamma, M. & Jayarama Reddy, S. (1994). Electrochemical behavior of formetanate and chlordimeform pesticides. Electroanalysis, 6, 612-615. https://doi.org/10.1002/elan.1140060716.
Thiago, C. C., Thiago, M.P., Fernando, H. C. & Sergio, A.S.M. (2016). Immobilization of ruthenium phthalocyanine on silica-coated multi-wall partially oriented carbon nanotubes: Electrochemical detection of fenitrothion pesticide. Materials Research Bulletin, 76, 41-47. https://doi.org/10.1016/j.materresbull.2015.12.007.
Thiago, M.B.F.O., Francisco W.P.R., Camila P.S., Giancarlo, R.S., Pedro de, L., Adriana N.C. & Simone, M. (2020). Current overview and perspectives on carbon-based (bio) sensors for carbamate pesticides electroanalysis. TrAC Trends in Analytical Chemistry, 124, 115779. https://doi.org/10.1016/j.trac.2019.115779.
Vieira da Silva, L., Nicholas, D.S., Andresa, K.A.A., Dave Di, E.R.S., Ana Caroline, F.S., Mesaque, C.F., Dimas, J.P.L., Phabyanno, R.L. & Marilia, O.F.G. (2021). A new electrochemical sensor based on oxidized capsaicin/multi-walled carbon nanotubes/glassy carbon electrode for the quantification of dopamine, epinephrine, and xanthurenic, ascorbic and uric acids, Journal of Electroanalytical Chemistry, 881, 114919. https://doi.org/10.1016/j.jelech em.2020.114919.
Research Articles

How to Cite

A modified sensitive palladium-copper oxide and multiwalled carbon nanotubes electrochemical sensor for detection of ametridione pesticide. (2021). Journal of Applied and Natural Science, 13(3), 798-806. https://doi.org/10.31018/jans.v13i3.2531