##plugins.themes.bootstrap3.article.main##

Ruchi Sankhwar Shilpi Yadav Abhishek Kumar Ravi Kr. Gupta

Abstract

Gram-positive bacteria cause various diseases from the superficial skin to deep tissue infections. The capability of causing numerous diseases is due to the production of virulence factors which are tightly regulated by the virulence genes. Various Gram-positive pathogenic bacteria e.g. Staphylococcus, Mycobacterium, and Listeria are capable of causing lethal infections in humans and animals. Conventional antibiotics, targeted antibiotics, and combinatorial drugs are used as therapeutic agents against Gram-positive pathogens. Due to intricate virulence pathway bacteria readily adopt resistance to available drugs. Therefore, there is need to develop some alternative approaches to combat these infections. Various natural extracts are effective against pathogenic bacteria with or without the available drugs. Curcumin is a natural extract of Curcuma longas rhizome, known as turmeric. Curcumin shows various biological activities such as antimicrobial, antioxidant and anti-inflammatory. It also shows strong antibacterial activity against Gram-positive and few Gram-negative bacteria. Besides all these beneficial applications, major drawbacks of curcumin are poor aqueous solubility and less bioavailability. However, drug delivery approaches including nanoformulation are developed to increase its stability in vitro and in vivo settings. The present review article focused on the translation of potential applications of curcumin in various diseases specifically caused by Gram-positive pathogens. Various methods used for the formulations of curcumin nanoparticles, combinatorial strategies with curcumin nanoparticles and their application in the prevention of infections have been discussed. The present article also discusses the future aspects of curcumin-nanoparticles and its use as an alternative therapeutic approach against pathogens.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Alternative therapeutics, Antimicrobial agent, Nanocurcumin, Nanoparticles, Natural antimicrobial agent

References
Ayubi, M., Karimi, M., Abdpour, S., Rostamizadeh, K., Parsa, M., Zamani, M. & Saedi, A. (2019). Magnetic nanoparticles decorated with PEGylated curcumin as dual targeted drug delivery: Synthesis, toxicity and biocompatibility study. Materials Science and Engineering C: Materials for Biological Applications. 104,109810. DOI: 10.1016/j.msec.2019.109810.
Ayukekbong, J.A., Ntemgwa, M. & Atabe, A.N. (2017). The threat of antimicrobial resistance in developing
countries: causes and control strategies.
Antimicrobial Resistant and Infection Control. 6,47.doi.o rg/10.1186/s13756-017-0208-x.
Akbik, D., Ghadiri, M., Chrzanowski, W. & Rohanizadeh R. (2014). "Curcumin as a wound healing agent." Life Sciences.116,1–7.doi.org/10.1016/j.lfs.2014.08.016. 
Arun, N. & Nalini, N. (2002). Efficacy of turmeric on blood glucose and polyol pathway in diabetic albino rats. Plant Foods for Human Nutrition.57,41-52.doi.org/ 10.1023/a:1013106527829.
Aggarwal, B.B., Bhatt, I.B., Ichikawa, H., Ahn, K.S., Sethi, G., Sandur, S.K., Natarajan, C., Seeram, N. & Shishodia, S. (2007), Curcumin biological and medicinal properties. In Turmeric: The Genus Curcuma, Ravindran PN, NirmalBabu K, Sivaraman K, Eds. CRC Press: New York. 297–368.
Akram, M., Uddin, S., Ahmed, A., Khan, U., Hannan, A., Mohiuddin, E. & Asif, M. (2010). Curcuma longa and curcumin: A review article. Romanian Journal of Biology-Plant Biology. 55,65-70.
Anand, P., Nair, H.B., Sung, B., Kunnumakkara, A.B., Yadav, V.R., Tekmal, R.R. & Aggarwal, B.B.(2010). "Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo," Biochemical Pharmacology.79,330–338.https://doi.org/10.1016/j.bcp.2009.09.003.
Allegri, P., Mastromarino, A. & Neri, P. (2010). Management of chronic anterior uveitis relapses: efficacy of oral phospholipidic curcumin treatment. Long-term follow-up. Clinical Ophthalmology,21,1201–1206.doi.org/10.2147/OPTH.S13271.
Allam, G. (2009). Immunomodulatory effects of curcumin treatment on murine schistosomiasis mansoni. Immunobiology. 214,712–727. doi.org/10.1016/j.imbio.2008.11.017. 
Aggarwal, B.B. & Sung, B. (2009). Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends in Pharmacological Sciences.30,85-94. doi.org/10.1016/j.tips.2008.11.002. 
An, F.F. & Zhang, X.H. (2017).. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics.7,3667-3689.doi.org/ 10.7150/thno.19365.  
Alcaraz, L.E., Blanco, S.E., Puig, O.N., Tomas, F. & Ferretti, F.H. (2000). Antibacterial activity of flavonoids against methicillin-resistant Staphylococcus aureus strains. Journal of Theoretical Biology,205(2),231-240.doi.org/10.1006/jtbi.2000.2062. 
Alsamydai, A. & Jaber, N. (2018). Pharmacological aspects of curcumin: Review article. International Journal of Pharmacognosy. 5, 313–326.
Al-Asmari, F., Mereddy, R., & Sultanbawa, Y. (2017). A novel photosensitization treatment for the inactivation of fungal spores and cells mediated by curcumin. Journal of Photochemistry and Photobiology. B 173, 301–306. doi: 10.1016/j.jphotobiol.2017.06.009
Beevers, C.S. & Huang, S. (2011). Pharmacological and clinical properties of curcumin. Biologics: Targets and Therapy.1,5–18.doi.org/10.214/BTAT.S17244.
Bhat, S., Amin, T. & Nazir, S. (2015). Biological activities of turmeric (Curcuma longa Linn.) - An Overview. BMR Microbiology.1:1-5.
Bolhassani, A.,Javanzad, S., Tayebeh, S.S., Mehrdad, H.M., Hashemi, Mohammad, R.A. & Sadat, S.M. (2014). Polymeric nanoparticles, potent vectors for vaccine delivery targeting cancer and infectious diseases. Human Vaccines & Immunotherapeutics,10,321-332.doi.or g/10.4161/hv.26796.
Bhardwaj, M., Singh, B.R., Sinha, D.K., Kumar, V., Prasanna,Vadhana, O.R., Singh, V. S., Nirupama, K.R., Pruthvishree & Archana, Saraf, B.S. (2016). Potential of Herbal Drug & Antibiotic Combi a., Basniwal, R.K., Buttar, H.S., Jain, V.K.and Jain, N. (2011). Curcumin nanoparticles: preparation, characterization, and antimicrobial study. Journal of Agricultural and Food Chemistry,59,2056–2061.doi.org/10.1021/jf104402t. 
Bisht, S., Feldmann, G., Soni, S., Ravi, R., Karikar, C., Maitra, A. & Maitra, A. (2007). Polymeric nanoparticle-encapsulated curcumin (nanocurcumin): a novel strategy for human cancer therapy. Journal of Nanotechnology.5,1–8. doi.org/ 10.1186/1477-3155-5-3.
Bilensoy, E., Sarisozen, C., Esendagl, G., Dogan, L.A., Aktas, Y., Sen, M. & Mangan, A.N. (2009). Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. International Journal of Pharmaceutics.371170–176.doi.org/ 1 0.1016/j.ijpharm.2008.12.015. 
Bansal, S.S., Goyal, M., Aquil, F, Vadhanam, M.V. & Gupta, R.C. (2011). Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prevention Research, 4,1158-1171.doi.org/10.1158/1940-6207.
Baban, D. & Seymour, L.W. (1998). Control of tumour vascular permeability.Advanced drug delivery reviews,34,109-119.doi.org/ 10.1016/s0169-409x(98)00003-9.
Calaf, G.M., Ponce-Cusi, R. & Carrion, F. (2018) Curcumin and paclitaxel induce cell death in breast cancer cell lines. Oncology Report. 40(4),2381–2388
Connell, B. J., Chang, S. Y., Prakash, E., Yousfi, R., Mohan, V., Posch, W., Wilflingseder, D., Moog, C., Kodama, E. N., Clayette, P. &Lortat-Jacob, H. (2016). A Cinnamon-Derived Procyanidin Compound Displays Anti-HIV-1 Activity by Blocking Heparan Sulfate- and Co-Receptor- Binding Sites on gp120 and Reverses T Cell Exhaustion via Impeding Tim-3 and PD-1 Upregulation. PloS one, 11(10), e0165386. https://doi.org/10.1371/journal.pone.0165386
Churchill, M., Chadburn, A., Bilinski, R.T. & Bertagnolli, M.M. (2000). Inhibition of intestinal tumors by curcumin is associated with changes in the intestinal immune cell
profile—Journal of Surgical Research, 89,169–175. doi.o rg/10.1006/jsre.2000.5826.
Cornaglia, G. (2009). "Fighting infections due to multidrug-resistant Gram-positive pathogens." Clinical Microbiology and Infection., 15, 209–211. doi.org/10.1111/j.1469-06 91.2009.02737.x.
Chauhan, M., Saha, S.& Roy, A. (2014). Curcumin: A review. Journal of Applied Pharmaceutical Research,2,18-28.
Cartiera, M.S., Ferreira, E.C., Caputo, C., Egan, M.E., Caplan, M.J.& Saltzman W.M. (2010). Partial correction of cystic fibrosis defects with PLGA nanoparticles encapsulating curcumin. Molecular Pharmaceutics. 1;7(1),86-93. doi.org/10.1021/mp900138a.
Dhama, K., Tiwari, R., Chakraborty, S., Saminathan, M., Kumar, A.,  K. Karthik., Wani,M.Y., Amarpal , Singh, S. V. & Rahal,A.(2014). Evidence based antibacterial potentials of medicinal plants and herbs countering bacterial pathogens especially in the era of emerging drug resistance: An integrated update. International Journal of Pharmacology,10,1-43. doi.org/10.3923/ijp.2014.1.43.
Decoster, A., Lemahieu, J.C., Dehecq, E. & Duhamel, M. (2008). Coursde Bactériologieenligne.Resistance aux antibiotique, Faculté Libre de Médecine, UniversitéCatholique de Lille, http://anne.decoster.free.fr/binde x.html.
Duvoix, A., Blasius, R., Delhalle, S., Schnekenburger, M., Morceau, F., Henry, E., Dicato, M. & Diederich, M. (2005). Chemopreventive and therapeutic effects of curcumin. Cancer Letters, 8,181–190. doi.org/10.1016/j.canlet.2 004.09.041.
Deryabin, D., Galadzhieva, A., Kosyan, D. & Duskaev G. (2019). Plant-Derived Inhibitors of AHL-Mediated Quorum Sensing in Bacteria: Modes of Action. International Journal of Molecular Sciences, 20(22), 5588.
Dauda, K., Busari, Z., Morenikeji, O., Afolayan, F., Oyeyemi, O., Meena, J., Sahu, D. & Panda A. (2017). Poly-D, L-lactic-co-glycolic acid-based artesunate nanoparticles; formulation, antimalarial and toxicity assessments. Journal of Zhejiang University Science B., 18:977–985.doi.org/10.1631/jzus.b1600389.
Duggal, D. (2011). Role of nanotechnology in new drug delivery systems. International Journal of Drug Development and Research. 3:4-8.
Dhivya, S. & Rajalakshmi, A.N. (2018). A Review on the preparation methods of curcumin nanoparticles. Pharma Tutor. 6, 6-10.doi.org/10.29161/PT.v6.i9.2018.6.
Eades, C., Hughes, S., Heard, K.and Moore, S.P. (2017). Antimicrobial therapies for Gram-positive infections. Clinical Pharmacist., 9(9), online | doi.org/10.1211/CP.20 17.20203363.
Elbialy, N. S., Abdelfatah, E. A. & Khalil, W. A. (2019). Antitumor activity of curcumin-green synthesized gold nanoparticles: In vitro study. Bio. Nano. Science, 9, 813–820.
Epstein, J., Sanderson, I.R. & Macdonald, T.T. (2010). Curcumin as a therapeutic agent: The evidence from in vitro, animal and human studies. British Journal of Nutrition,103:1545-1557.doi.org/ 10.1017/S0007114509 993667.
Evans, C.E., Banso, A. & Samuel, O.A.,(2002). Efficacy of some nupe medicinal plants against Salmonella typhi: an in vitro study. Journal of Ethnopharmacology, 80,21–24.doi.org/10.1016/s0378-8741(01)00378-6.
Fischbach, M.A. (2011). Combination therapies for combating antimicrobial resistance. Current Opinion in Microbiology, 14,519-523.doi.org/10.1016/j.mib.2011.08.003.
Fan, T.X., Chow, S.K.& Zhang, D. (2009). Biomorphic mineralization: from biology to materials. Progress in Materials Science, 54,542–659.
Ferrari, R.,Sponchioni, M., Morbidelli, M. &Moscatelli, D. (2018). Polymer nanoparticles for the intravenous delivery of anticancer drugs: the checkpoints on the road from the synthesis to clinical translation. Nanoscale 10, 22701–22719. doi: 10.1039/C8NR05933K.
Feng, S.S. (2004). Nanoparticles of biodegradable
polymers for new-concept chemotherapy. Expert Review of Medical Devices. 1,115–125.doi.org/ 10.1586/174344 40.1.1.115.
Fang, J., Yu, L., Gao, P., Cai, Y. & Wei, Y. (2010). Detection of protein-DNA interaction and regulation using gold nanoparticles.Analytical Biochemistry. 399,262-267.doi.or g/ 10.1016/j.ab.2009.11.013. 
Fritzen-Garcia, M.B., Zanetti-Ramos, B.G., de, Oliveira, C.S., Soldi, V., Pasa, A.A. & Creczynski-Pasa, T.B.(2009). Atomic force microscopy imaging of polyurethane nanoparticles onto different solid substrates. Materials Science and Engineering, 29, 405–409.doi.org/10.1016/j.msec.2008.08.012.
Gomes,Dde, C.F., Alegrio, L.V., de, Lima, M.E., Leon, L.L. & Araújo, C.A. (2002). Synthetic derivatives of curcumin & their activity against Leishmania amazonensis. Arzneimittelforschung, 52,120-124.
Grace, D. (2015). Review of evidence on antimicrobial resistance and animal agriculture in developing countries, London, UK: Department for International Development, https://doi.org/10.12774/eodcr.june2015.graced.
Gottschalk, F., Sonderer, T., Scholz, R.W. & Nowack, B. (2009). "Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions." Environmental Science & Technology, 43,9216–9222.doi.org/10.1021/es9015553.
Gopal, J., Muthu, M. & Chun, S. (2016). Bactericidal Property of Macro, Micro- and Nanocurcumin: An Assessment. Arabian Journal for Science and Engineering Abbreviation. 41,2087–2093.doi.org/10.1007/s13369-015-1834-3.
Guillamet, C.V. & Kollef, M.H. (2014). Treatment of Gram – positive infections in critically ill patients, BMC. Infectious Diseases. 14,92.http://www.biomedcentral.co m/1471-2334/14/92.
Gwinn, M.R. & Vallyathan, V. (2006). Nanoparticles: health effects--pros and cons. Environmental Health Perspectives, 114(12),1818-1825.doi.org/10.1289/ehp.8871.
Hu, G., Caza, M., Bakkeren, E., Kretschmer, M., Bairwa, G., Reiner, E. & Kronstad, J. (2017). A P4-ATPase subunit of the Cdc50 family plays a role in iron acquisition and virulence in Cryptococcus neoformans. Cell Microbiology, 19,e12718. doi: 10.1111/cmi.12718
Huang, F., Gao, Y., Zhang, Y., Cheng, T., Ou, H., Yang, L., Liu, J., Shi, L. & Liu, J. (2017). Silver decorated polymeric micelles combined with curcumin for enhanced antibacterial activity. ACS Applied Materials & Interfaces. 9, 16880–16889. doi: 10.1021/ acsami.7b03347
Himani, D. & Joshi, S. (2019). Antimicrobial activity of amides using different synthetic procedure with different microbial strains. International Journal of Universal Pharmacy and Bio Sciences, 8,2319-8141.
Igbal, M., Sharma, S.D., Okazaki, Y., Fujisawa, M. & Okada, S. (2003). Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: possible role in protection against
chemical carcinogenesis and toxicity. Pharmacology and Toxicology, 92,33-38. doi.org/10.1034/j.1600-0773.2003.920106.x
Jain, S., Hirst, D.G. & O'Sullivan, J.M. (2012). Gold nanoparticles as novel agents for cancer therapy. British Journal of Radiology. 85,101–113. doi.org/10.1259/bjr/59448833. 
Jain, K.K.(2008). The handbook of nanomedicine, Humana/Springer,Totowa, NJ,USA, (2008).
Jannathul, F.M. & Lalitha, P. (2015). Apoptotic efficacy of biogenic silver nanoparticles on human breast cancer MCF-7 cell lines. Progress in Biomaterials. 4,113–121.doi.org/10.1007/s40204-015-0042-2.  
Koide, T., Nose, M., Ogihara, Y., Yabu, Y. & Ohta, N. (2002). Leishmanicidal effect of curcumin in vitro. Biological and Pharmaceutical Bulletin. 25,131-133.doi.org/10.1248/bpb.25.131.
Karaman, M., F?r?nc?, F., Ar?kan,Ayy?ld?z, Z. &Bahar, I.H. (2013). Effects of imipenem, tobramycin and curcumin on biofilm formation of Pseudomonas aeruginosa strains. MikrobiyolojiBulteni., 47,192–194.doi.org/10.5578/mb.390 2.
Kang H.J, Lee S.H, Price J.E. & Kim L.S. (2009) Curcumin suppresses the paclitaxel-induced nuclear factor-kappa B in breast cancer cells and potentiates the growth inhibitory effect of paclitaxel in a breast cancer nude mice model. Breast Journal, 15(3),223–229.
Karuppusamy, C. &Venkatesan, P. (2017). Role of nanoparticles in drug delivery system : A comprehensive review. Journal of Pharmaceutical Sciences and Research, 9,318-325.
Kurien, B.T., Singh, A., Matsumoto, H. & Scofield, R.H. (2007). Improving the solubility & pharmacological efficacy of curcumin by heat treatment. Assay and Drug Development. Technologies, 5,567–576.doi.org/10.1089/adt.20 07.064.
Kapinova, A., Stefanicka, P., Kubatka, P., Zubor, P., Uramova, S., Kello, M., Mojzis, J., Blahutova, D., Qaradakhi, T., Zulli, A., Caprnda, M., Danko, J., Lasabova, Z., Busselberg, D & Kruzliak P. (2017).Are plantbased functional foods better choice against cancer than single phytochemicals? A critical review of current breast cancer research. Biomedicine and Pharmacotherapy, 96,1465–1477.
Koh, Y.C. & Pan, M.H (2018). Review on discovery and development of novel phytochemicals which can be used in functional foods. Current Research in Nutrition and Food Science Journal, 6(2),241–262.
Krausz, A. E., Adler, B. L., Cabral, V., Navati, M., Doerner, J., Charafeddine, R. A., Chandra, D., Liang, H., Gunther, L., Clendaniel, A., Harper, S., Friedman, J. M., Nosanchuk, J. D. & Friedman, A. J. (2015). Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine. 11(1),195-206.doi.org/10.1016/j.nano.2014.09.004.
Karthikeyan, A ., Senthil, N. & Min, T, (2020). Nanocurcumin: A Promising Candidate for Therapeutic Applications. Frontiers in Pharmacology.11,487.doi: 10.3389/fphar.2020.00487.
Khan, M. N., Haggag, Y. A., Lane, M. E., Mccarron, P. A., & Tambuwala, M. M. (2018). Polymeric nano-encapsulation of curcumin enhances its anti-cancer activity in breast (MDA-MB231) and lung (A549) cancer cells through reduction in expression of HIF-1a and nuclear p65 (REL A). Current Drug Delivery, 15, 286–295. doi: 10.2174/1567201814666171019104002
Khalil, R.R & Mustafa YF. (2020). Phytochemical, antioxidant and antitumor studies of coumarins extracted from granny smith apple seeds by different methods. Systematic Reviews in Pharmacy, 11(2),57-63
Lima, C.F., Pereira-Wilson, C. & Rattan, S.I.S. (2011). "Curcumin induces heme oxygenase-1 in normal human skin fibroblasts through redox signaling: relevance for anti-aging intervention." Molecular Nutrition and Food Research, 55,430–442. doi.org/10.1002/mnfr.201000221. 
Li, BC., Li, XL., Lin, H.C. & Zhou Y. (2018). Curcumin as a Promising Antibacterial Agent: Effects on Metabolism and Biofilm Formation in S. mutans. Biomed Research International, 2018,4508709.
Lu, J.M., Wang, X., Marin-Muller, C., Wang, H., Lin, P.H., Yao, Q. & Chen, C. (2009). Current advances in research and clinical applications of PLGA-based nanotechnology.Expert Review of Molecular Diagnostics, 9,325–341. doi.org/10.1586/erm.09.15.
Luz, P.P., Magalhaes, L.G., Pereira, A.C., Cunha, W.R., Rodrigues, V., Andrade, E. & Silva, M.L. (2012). Curcumin-loaded into PLGA nanoparticles preparation in vitro schistosomicidal activity. Parasitology Research,110,593–598.doi.org/ 10.1007/s00436-011-2527-9.
Lukita-Atmadja, W., Ito, Y., Baker, G.L. & McCuskey, R.S. (2002). Effect of curcuminoids as anti-inflammatory agents on the hepatic microvascular response to endotoxin. Shock. 17,399-403.doi.org/10.1097/00024382-20020 5000-00010.
Li, M.,Ngadi, M.O. & Ma, Y. (2014). Optimisation of pulsed ultrasonic and microwave-assisted extraction for curcuminoids by response surface methodology and kinetic study. Food Chemistry. 165,29–34.
Lane, D. (2006). Designer combination therapy for cancer. Nature Biotechnology, 24,163–164.doi.org/10.1038/nbt0 206-163.
Mohammed, E.T. & Mustafa, Y.F. (2020). Coumarins from red delicious apple seeds: Extraction, phytochemical analysis, and evaluation as antimicrobial agents. Systematic Reviews in Pharmacy.11(2),64-70.
Martins, C.V., da, Silva, D.L., Neres, A.T., Magalhaes, T.F., Watanabe, G.A., Modolo, L.V., Sabino, A.A., de, Fátima, A. & de, Resende, M.A.(2009). Curcumin as
a promising antifungal of clinical interest. Journal of Antimicrobial Chemotherapy, 63,337-339. doi.org/10.1093/jac/dkn488.
Mihaescu, G., Chifiriuc, M.C. & Dutu, L.M. (2007). Antibiotice is substantechimioterapeutice antimicrobiene. Bucuresti :EdituraAcademieiRomane.
Mun, S. H., Kim, S. B., Kong, R., Choi, J. G., Kim, Y. C., Shin, D. W., Kang, O. H., & Kwon, D. Y. (2014). Curcumin reverse methicillin resistance in Staphylococcus aureus." Molecules, 19,18283–18295.doi.org/10.3390/molecu les191118283.
Matsui, T., Yamane, J., Mogi, N., Yamaguchi, H., Takemoto, H., Yao, M. & Tanaka, I. (2012). "Structural reorganization of the bacterial cell-division protein FtsZ from Staphylococcus aureus." Acta Crystallographica Section D: Biological Crystallography, 68,1175-1188.doi.org/ 10.1107/S0907444912022640.
Mun, S.H., Joung, D.K., Kim, Y.S., Kang, O.H., Kim, S.B., Seo, Y.S., Kim, Y.C., Lee, D.S., Shin, D.W., Kweon, K.T., & Kwon, D.Y. (2013). Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine, 20,714-718.doi.org/10.1016/j.phymed.2013.02.006.
83. Magalhaes, L.G., Machado, C.B., Morais, E.R., Magalhaes, L.G., Machado, C.B., Morais, E.R., Moreira, E.B., Soares, C.S., da, Silva, S.H., Da, Silva, Filho, A.A. & Rodrigues, V.(2009). In vitro schistosomicidal activity of curcumin against Schistosoma mansoni adult worms. Journal of Parasitology Research, 104,1197-1201. doi.org/10.1007/s00436-008-1311-y. 
Moballegh, Nasery, M., Abadi, B., Poormoghadam, D., Zarrabi, A., Keyhanvar, P., Khanbabaei, H., Ashrafizadeh, M., Mohammadinejad, R., Tavakol, S. &Sethi, G. (2020). Curcumin Delivery Mediated by Bio-Based Nanoparticles: A Review. Molecules, 25, 689.
Maheshwari, R.K., Singh, A.K., Gaddipati, J. & Srimal, R.C. (2006). Multiple biological activities of curcumin: a short review. Life Science, 78,2081-2087. https://doi.org/10.1016/j.lfs.2005.12.007.
Mosovska, S., Petakova, P., Kalinak, M. &Mikulajova, A. (2016). Antioxidant properties of curcuminoids isolated from Curcuma longa L. Acta ChimicaSlovenica. 9,130-135.doi.org/ 10.1515/acs-2016-0022.
Maxson, T. & Mitchell, D.A. (2016). Targeted treatment for bacterial infections: Prospects for pathogen-specific antibiotics coupled with rapid diagnostics. 72,3609-3624. doi.org/10.1016/j.tet.2015.09.069
Moghaddam, K.M., Iranshahi, M., Yazdi, M.C. &Shahverdi, A.R. (2009). The combination effect of curcumin with different antibiotics against Staphylococcus aureus. International Journal of Green Pharmacy, 3,141-143.doi.org/10.4103/0973-8258.54906.
Mitchison, D. & Davies, G. (2012). The chemotherapy of tuberculosis: past, present and future. International Journal of Tuberculosis and Lung Disease, 16,724–32. doi.or g/10.5588/ijtld.12.0083.
Makarov, V.V., Love, A.J., Sinitsyna, O.V., Makarova, S.S., Yaminsky, I.V., Taliansky, M.E., & Kalinina, N.O. (2014). "Green" nanotechnologies: synthesis of metal nanoparticles using plants. Acta Natura. 6,35–44.
Mainardes, R.M., Khalil, N.M. &Gremião, M.P.D. (2010). Intranasal delivery of zidovudine by PLA and PLA–PEG blend nanoparticles. International Journal of Pharmaceutics,395,266-271.doi.org/10.1016/j.ijpharm.2010.05.020. 
Maiti, K., Mukherjee, K., Gantait, A., Saha, B.P. & Mukherjee, P.K. (2007). Curcumin- phosphoplipid Complex, preparation, therapeutic evaluaton and pharmacokinetic study in rats. International Journal of Pharmaceutics.330,155-163.doi.org/10.1016/j.ijpharm.2006.09.025.  
Mukerjee, A. &Vishwantha, J.K. (2009). Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Research. 29,3867–3876.
Mathew, A., Fukuda, T., Nagaoka, Y., Hasumura, T., Morimoto, H., Yoshida, Y., Maekawa, T., Venugopal, K. & Kumar, D.S. (2012). Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer's disease. PLoS One. 7(3), e3261 6.doi.org/10.1371/journal.pone.0032616.
McCall, R.L. & Sirianni, R.W. (2013). PLGA nanoparticles formed by Single- or Double-emulsion with Vitamin ETPGS. Journal of Visualized Experiments. 82,e51015. doi.org/10.3791/51015.
Muqbil, I., Masood, A., Sarkar, F.H., Mohammad, R.M. & Azmi, A.S. (2011). Progress in nanotechnology based approaches to enhance the potential of chemopreventive agents. Cancers.3,428–445.doi.org/ 10.3390/cancers3010428.
Mirakabad, F.S.T., Nejati-Koshki, K., Akbarzadeh, A., Yamchi, M.R., Milani, M., Zarghami, N., Zeighamian, V., Rahimzadeh, A., Alimohammadi, S., Hanifehpour, Y. & Joo, S.W.(2014). PLGA-based nanoparticles as cancer drug delivery systems. Asian Pacific Journal of Cancer Prevention. 15,517–535. doi.org/ 10.7314/APJCP.2014.15.2.517.
Moreno-Vega, A.I., Gomez-Quintero, T., Nunez- Anita, R.E., Acosta-Torres, L.S. & Castano, V. (2012). Polymeric and ceramic nanoparticles in biomedical applications. Hindawi Publishing Corporation. Journal of Nanotechnology .936041,1-10.doi.org/ 10.1155/2012/936041.
Nguyen, D.N., Green, J.J, Chan, J.M., Langer, R. & Anderson, D.G. (2009). Polymeric materials for gene delivery and DNA vaccination. Advance Materials.21,847–867.
Niamsa, N., & Sittiwet, C. (2009). Antimicrobial activity of Curcuma longa aqueous extract. Jounal of Pharmacology and Toxicology, 4, 173–177.doi.or g/10.3923/jpt.2 009.173.177.
Nambiar, S., Osei, E., Fleck, A., Darko, J., Mutsaers, A. J. & Wettig, S. (2018). Synthesis of curcumin-functionalized gold nanoparticles and cytotoxicity studies in human prostate cancer cell line. Applied. Nanoscience. 8, 347–357.
Nakamura, K., Yasunaga, Y., Segawa, T., Ko, D., Moul, J.W., Srivastava, S. & Rhim, J.S. (2002). Curcumin down-regulates AR gene expression and activation in prostate cancer cellLines. International Journal of Oncology.4,825-830.
Nair, K.L., Thulasidasan, A.K., Deepa, G., Anto, R.J. & Kumar, G.S. (2012). Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier. International Journal of Pharmaceutics. 425,44-52.doi.org/10.1016/j.ijpharm.2012.01.003.
Nguyen, T.A. & Friedman, A.J. (2013). Curcumin: a
novel treatment for skin-related disorders. Journal of Drugs in Dermatology, 12,1131-1137.
Niederman, M.S. (2005). Principles of appropriate antibiotic use.International Journal of Antimicrobial Agents. 2005,S170– S175.doi.org/ 10.1016/s0924-8579(05)80324-3.
Nair, N., Biswas, R., G¨otz, F. & Biswas, L. (2014). Impact of Staphylococcus aureus on pathogenesis in polymicrobial infections. Infection and Immunity. 82,2162–2169. doi.org/10.1128/IAI.00059-14
Naksuriya, O., Okonogi, S., Schiffelers, R.M. & Hennink, W.E. (2014). Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 35, 3365-3383.doi.org/ 10.1016/j.biomaterials.20 13.12.090.
O'Neill, J. (2015). Antimicrobials in agriculture and the environment: reducing unnecessary use and waste. London, UK: Review on Antimicrobial Resistance. Available at: http://amr-review.org/sites/default/files/Antimicrobials in agriculture and the environment - Reducing unnecessary use and waste.pdf.
Praditya, D., Kirchhoff, L., Bruning, J., Rachmawati, H., Steinmann, J. & Steinmann, E. (2019). Anti-infective properties of the golden spice curcumin. Frontier in Microbiology, 10,912. doi.org/10.3389/fmicb.2019.00912.
Park, J., Fong, P.M., Liu, J., Russell, K.S., Booth, K.J., Saltzman, W.M. & Fahmy, T.M. (2009). PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine. 5,410-418.doi: 10.1016/j.nano.2009.02.002
Priyadarsini, K.I. (2014). The chemistry of curcumin: from extraction to therapeutic agent. Molecules.19,20091–20112.doi.org/10.3390/molecules191220091.
Quispe, Soto, E.T. & Calaf, G.M. (2016) Effect of curcumin & paclitaxel on breast carcinogenesis. International Journal of Oncology. 49(6),2569–2577.
Rai, M., Pandit, R., Gaikwad, S., Yadav, A. & Gade, A. (2015). Potential applications of curcumin and curcumin nanoparticles: from traditional therapeutics to modern nanomedicine. Nanotechnology Review.4,161–172.
Rejhova, A.., Opattova, A., Cumova, A., Sliva, D. & Vodicka, P. (2018). Natural compounds and& combination therapy in colorectal cancer treatment. Europian Journal of Medical Chemistry.144,582–594.doi: 10.1016/j.ejmech.2017.12.039
Richman, D.D. (2001). HIV chemotherapy. Nature. 410,995–1001. doi.org/10.1038/35073673.
Rai, M., Yadav, A. &Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances.27,76-83.
Rai, D., Singh, J.K., Roy, N. & Panda, D. (2008). Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. Biochemical Journal. 410,147–155. doi.org/10.1042/BJ20070891.
Roacho-Pérez, J.A., Ruiz-Hernandez, F.G., Chapa-Gonzalez, C., Martínez-Rodríguez, H.G., Flores-Urquizo, I.A., Pedroza-Montoya, F.E., Garza-Treviño, E.N., Bautista-Villareal, M., García-Casillas, P.E. & Sánchez-Domínguez, C.N. (2020). Magnetite Nanoparticles Coated with PEG 3350-Tween 80: In Vitro Characterization Using Primary Cell Cultures. Polymers. 12, 300.
Redondo-Blanco S, Fernandez J, Gutierrez-del-Rio, I., Villar, C.J. & Felipe Lombo. (2017) New insights toward colorectal cancer chemotherapy using natural bioactive compounds. Frontier in Pharmacology. 8,109.
Rudrappa, T.& Bais, H.P. (2008). Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. Journal of  Agricultural and Food Chemistry. 56,1955–1962.doi.org/10.1021/jf072591j.
Rasmussen, H.B., Christensen, S.B., Kvist, L.P. &Karazmi, A. (2000). A simple and efficient separation of the curcumins, the antiprotozoal constituents of Curcuma longa.  Planta Medica, 66,396-398. doi.org/10.1055/s-2000-8533.
Rafiee, Z., Nejatian, M., Daeihamed, M., & Jafari, S. M. (2019). Application of different nanocarriers for encapsulation of curcumin. Critical Reviews in Food
Science and Nutrition, 59, 3468–3497. doi: 10.1080/104 08398.2018.1495174.
Suresh, S., Sankar, P., Telang, A. G., Kesavan, M. & Sarkar, S. N. (2018). Nanocurcumin ameliorates Staphylococcus aureus-induced mastitis in mouse by suppressing NF-kB signaling and inflammation. International Immunopharmacology. 65,408–412. doi: 10.1016/j.intimp.2018.10.034
Salehi, B., Stojanovi?-Radi?, Z., Mateji?, J., Sharifi-Rad, M., Anil Kumar, N. V., Martins, N. & Sharifi-Rad, J. (2019). The therapeutic potential of curcumin: A review of clinical trials. European Journal of Medicinal Chemistry. 163, 527-545. https://doi.org/10.1016/j.ejm ech.2018.12.016
Singh, C. K., Siddiqui, I. A., El-Abd, S., Mukhtar, H. & Ahmad, N. (2016).Combination chemoprevention with grape antioxidants. Molecular Nutrition & Food Research. 60(6),1406–1415.
Steinmann, J., Buer, J., Pietschmann, T. & Steinmann, E. (2013). Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. British Journal of Pharmacology. 168,1059–1073.doi.or g/10.1111/bph.12009.
Singh, P. & Panda, D. (2010). Fts Z inhibition: a promising approach for anti-staphylococcal therapy, Drug News Perspect., 23,295–304.doi.org/10.1358/dnp.20 10.23.5.1429489.
Sanpui, P., Chattopadhyay, A. & Ghosh, S.S. (2011). Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier.ACS Applied Materials & Interfaces, 3,218–228. doi.org/10.1021/am100840c.
Shailendiran, D., Pawar, N., Chanchal, A., Pandey, R.P., Bohidar, H.B. & Verma, A.K. Characterization and antimicrobial activity of nanocurcumin and curcumin, in Proceedings of the International Conference on Nanoscience, Technology and SocietalImplications (NSTSI'11), pp. 1–7, IEEE, December 2011.
Stevanovic, M., Maksin, T., Petkovic, J., Filipic, M. & Uskokovic, D. (2009). An innovative, quick and convenient labeling method for the investigation of pharmacological behavior and the metabolism of Poly(DL-lactide-coglycolide) nanospheres. Nanotechnology. 20,1-12.doi.org/10.1088/0957-4484/20/33/335102.
Shishodia, S., Chaturvedi, M.M, & Aggarwal, B.B. (2007). Role of curcumin in cancer therapy. Current Problems in Cancer.31,243–305.doi.org/10.1016/j.currproblcancer.2007.04.001.
Saengkrit, N., Sanitrum, P., Woramongkolchai, N., Saesoo, S., Pimpha, N., Chaleawlert-Umpon, S., Tencomnao, T. & Puttipipatkhachorn, S. (2012). The PEI-introduced CS shell/PMMA core nanoparticle for silencing the expression of E6/E7 oncogenes in human cervical cells. Carbohydrate Polymers.15;90(3),1323-9.doi.org/ 10.1016/j.carbpol.2012.06.079.
Stevanovic, M. &Skokovic, D. (2009). Poly(lactide-co-glycolide)-basedmicro and nanoparticles for the controlled drug delivery of vitamins.Current Nanoscience. 5,1-14.
Stevanovic, M., Radulovic, A., Jordovic, B. & Uskokovic, D.P. (2008). Poly(DL-lactide-co-glycolide) Nanospheres for the sustained release of folic acid. Journal of Biomedical Nanotechnology, 4,349-358.doi.or g/ 10.1166/jbn.2008.321.
Surh, Y.J., Chun, K.S., Cha, H.H., Han, S.S, Keum, Y.S., Park, K.K. & Lee, S.S.(2001). Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutation Research, 480-481, 243-268.doi.org/ 10.1016/s0027-5107(01)00183-x.
Smerak, P., Polivkova, Z., Sestakova, H., Stetina, R., Barta, I., Langova, M., Turek, B. & Bartova, J. (2006). Antimutagenic effect of curcumin and its effect on the immune response in mice. Czech Journal of Food Science. 24,72–83.
Sharma, R.A., Steward, W.P. &Gescher, A.J. (2007) Pharmacokinetics and pharmacodynamics of curcumin. The molecular targets and therapeutic uses of curcumin in health and disease. New York: Springer, pp.453–470.
Sharma, V.K., Ria, R.A. & Lin, Y. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities.Advances in Colloid and Interface Science. 145,83-96.doi.org/ 10.1016/j.cis.2008.09.002.
Thadakapally, R., Aafreen, A., Aukunuru, J., Habibuddin, M., & Jogala, S. (2016). Preparation and characterization of PEG-albumin-curcumin nanoparticles intended to treat breast cancer. Indian Journal of Pharmaceutical Science. 78, 65. doi: 10.4103/0250-474X.180250.
Turos, E., Shim, J.Y., Wang, Y., Greenhalgh, K., Reddy, G.S., Dickey. S. & Lim, D.V. (2007). Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents. Bioorganic & Medicinal Chemistry Letters. 17,53–56. doi.org/ 10.1016/j.bmcl.2006.09.098.
Tongnuanchan, P.& Benjakul, S. (2014). Essential oils: extraction, bioactivities, and their uses for food preservation. Journal of Food Science. 79,1231 – 1249.doi.org/10.1111/1750-3841.12492.
Teow, S.Y., Liew, K., Ali, S.A., Khoo, A.S.B. & Peh, S.C. (2016). Antibacterial action of curcumin against Staphylococcus aureus: A Brief Review. Journal of Tropical Medicine.10,2853045.doi:org/10.1155/2016/2853045.
Taccola, L.,Raffa, V.,Riggio, C.,Vittorio, O.,Lorio, M.C., Vanacore, R., Pietrabissa, A. & Cuschieri, A. (2011). Zinc oxide nanoparticles as selective killers of proliferating cells. International Journal of Nanomedicine. 6,1129–1140. doi.org/10.2147/IJN.S16581.
Tomar, A. & Garg, G. (2013). Short Review on application of gold nanoparticles. Global Journal of. Pharmacology. 7,34-38.doi.org/ 10.5829/idosi.gjp.2013.7.1.66173.
Thanh, N.T.K.& Green, L.A.W. (2010). Functionalisation of nanoparticles for biomedical applications. Nano Today. 5,213-230. doi.org/ 10.1016/j.nantod.2010.05.003.
Tyagi, P., Singh, M., Kumari, H., Kumari, A. & K. Mukhopadhyay. (2015). Bactericidal activity of curcumin I is associated with damaging of bacterial membrane, PLoS ONE. 10, 3, e0121313.
Tan, B., & Norhaizan, M. E.. (2019). Curcumin combination chemotherapy: the implication and efficacy in cancer. Molecules. 24, 2527. doi: 10.3390/ molecules24142527.
Umrani, R.D. & Paknikar, K.M.(2014). Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. Nanomedicine. 9,89–104.doi.org/10.2217/nnm.12.205.
Upendra, R.S., Khandelwal, P. & Reddy, A.H.M. (2011). "Turmeric powder (Curcuma longa Linn.) as an antifungal agent in plant tissue culture studies." International Journal of Engineering Science. 3,7899–7904.
Ungphaiboon, S., Supavita, T., Singchangchai, P., Sungkarak, S., Rattanasuwan, P. & Itharat, A. (2005). Study on antioxidant and antimicrobial activities of turmeric clear liquid soap for wound treatment of HIV patients, Songklanakarin. Journal of Science & Technology.27,569–578.
Verma, R. J., Chakraborty, B. S., Patel, C. & Mathuria, N. (2008). Curcumin ameliorates aflatoxin-induced changes in SDH and ATPase activities in liver and kidney of mice. Acta Poloniae Pharmaceutica. 65, 415–419.
Wang, P., Wang, X., Wang, L., Hou, X., Liu, W. & Chen, C. (2015). Interaction of gold nanoparticles with proteins and cells. Science and Technology of Advanced Materials. 16,034610.doi.org/ 10.1088/1468-6996/16/3/034610.
Woodford, N. & Livermore, D.M.(2009). Infections caused by Gram-positive bacteria: a review of the global challenge. Infection.59,S4–S16. doi.org/10.1016/S0163-4453(09)60003-7.
Wang, J., Zhou, X., Li, W., Deng, X., Deng, Y. & Niu, X. (2016). Curcumin protects mice from Staphylococcus aureus pneumonia by interfering with the self-assembly process of ?-hemolysin. Scientific Reports. 6,28254.doi.org/10.1038/srep28254.
Walsh, C. (2000). Molecular mechanisms that confer antibacterial drug resistance. Nature. 406,775–781.doi.org/10.1038/35021219.
Worthington, R.J. & Melander, C. (2013). Combination approaches to combat multi-drug resistant bacteria. Trends in Biotechnology. 31,177–184.doi.org/10.1016/j.tibtech.2012.12.006.
Wang, Y., Lu. Z., Wu, H. & Lv, F. (2009). Studyon the antibiotic activity of microcapsule curcumin against foodborne pathogens. International Journal of Food
Microbiology. 136, 71–74. doi.org/10.1016/j.ijfoodmi cro.2 009.09.001.
Wang, Y.F., Shao, J.J, Zhou, C.H., Zhang, D.L., Bie, X.M. &Lv, F.X. (2012). Food preservation effects of curcumin microcapsules. Food Control. 27,113–117.
Xiaoling, L. & Haskara., R.J. (2006). Design of controlled release drug delivery systems. MacGraw-Hill, New York.
Xie, M., Fan, D., Li, Y., He, X., Chen, X., Chen, Y., Zhu, J., Xu, G., Wu, X.amd Lan, P. (2017). Supercritical carbon dioxide-developed silk fibroin nanoplatform for smart colon cancer therapy. International Journal of Nanomedicine. 12,7751-7761.
Yallapu, M.M., Maher, D.M., Sundram, V., Bell, M.C., Jaggi, M. & Chauhan, S.C. (2010). Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. Journal of Ovarian Research. 3,11–12.
Zhan, Y., Chen, Y., Liu, R.,Zhang, H. & Zhang, Y.(2014). Potentiation of paclitaxel activity by curcumin in human breast cancer cell by modulating apoptosis and inhibiting EGFR signaling. Archives of Pharmacal Research.37(8),1086–1095.
Zhang, Y., Li, H., Zhang, J., Zhao, C., Lu, S., Qiao, J. & Han, M. (2020). The combinatory effects of natural products and chemotherapy drugs and their mechanisms in breast cancer treatment. Phytochemistry Reviews.19,1179–1197.
Zaharieva, M. M., Kroumov, A. D., Dimitrova, L., Tsvetkova, I., Trochopoulos, A., Konstantinov, S. M., Berger, M.R., Momchilova M., Yoncheva, K. & Hristo Najdenski, H. M. (2019). Micellar curcumin improves the antibacterial activity of the alkylphosphocholines erufosine and miltefosine against pathogenic Staphyloccocus aureus strains. Biotechnology and Biotechnological Equipment. 33, 38–53. doi: 10.1080/13102818.2018.1533792
Zhang, N.-Y., Qi, M., Zhao, L., Zhu, M.-K., Guo, J., Liu, J., Gu, C. Q., Rajput, S. A., Krumm, C. S., Qi, D. S. & Sun, L. H.(2016). Curcumin prevents aflatoxin B1 hepatoxicity by inhibition of cytochrome P450 isozymes in chick liver. Toxins 8,E327. doi: 10.3390/toxins8110327.
Section
Research Articles

How to Cite

Application of nano-curcumin as a natural antimicrobial agent against Gram-positive pathogens. (2021). Journal of Applied and Natural Science, 13(1), 110-126. https://doi.org/10.31018/jans.v13i1.2482