Article Main

Alka Kushwaha Ashok Kumar Rahila Rahman Khan

Abstract

Terrestrial carbon sequestration is a natural process towards carbon mitigation in which perennial trees play a vital role. Total biomass of the tree can be measured by a destructive and Non-destructive method. Since tree felling is ban in India, Non-destructive measurements by allometric equations have been widely used for the estimation of tree biomass, which is derived from the destructive method. The present study focused on estimating mango (Mangifera indica) wood logs volume both by destructive and Non-destructive methods in ICAR-Central Institute of Subtropical Horticulture, Lucknow. In Non-destructive method, all required physical parameters were recorded from different positions and further calculated by T2: log formula = ?h (r12+r22+r1 r2)/3; T3: cylindrical shape formula = ?r2h with mean value and T4: cylindrical shape formula = ?r2h with maximum value. The calculated volume of mango wood logs was compared with the obtained volume by T1:Water displacement method. ANOVA was used to compare volume generated from several methods. The results showed that average volume obtained by T2 and T3 methods was found less than the T1 method, which was 13.69 % and 12.95 %, respectively. The volume obtained by T4 was found close to the T1. The study minimized the error while estimating the biomass of mango trees with the essential parameter, the wood volume.  Calculating the volume of major branches in the mango tree will make it easier to calculate accurate AGB by a Non-destructive method. The estimated AGB will be helpful to calculate the amount of sequestered carbon and contribution toward mitigating atmospheric carbon dioxide by mango cultivated areas.

Article Details

Article Details

Keywords

Destructive methods, Non-destructive methods, Physical measurements, Tree volume, Wood density

References
Ahmed, R., Siqueira, P., Hensley, S., and Bergen, K. (2013). Uncertainty of forest biomass estimates in north temperate forests due to allometry: Implications for remote sensing. Remote Sensing, 5(6), 3007-3036. https://doi.o rg/10.3390/rs5063007
Altanzagas, B., Luo, Y., Altansukh, B., Dorjsuren, C., Fang, J., and Hu, H. (2019). Allometric equations for estimating the above-ground biomass of five forest tree species in Khangai, Mongolia. Forests, 10(8), 661.  https://doi.org/10.3390/f10080661
Aryal, D. R., De Jong, B. H., Ochoa-Gaona, S., Esparza-Olguin, L., and Mendoza-Vega, J. (2014). Carbon stocks and changes in tropical secondary forests of southern Mexico. Agriculture, Ecosystems and Environment, 195, 220-230.https://doi.org/10.1016/j.agee.2014.06.005
ASTM. (2017). Standard test methods for specific gravity of wood and wood-based materials. Edition D 2395–17. Philadelphia, USA. pp 353–360
Blozan, W. (2006). Tree measuring guidelines of the eastern native tree society. Bulletin of the Eastern Native Tree Society, 1(1), 3-10.
Brown S. (1997). Estimating biomass and biomass change of tropical forests: a primer. Food and Agriculture Org. 134. ISSN: 0258-6150
Brown, S. L., Schroeder, P., and Kern, J. S. (1999). Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management, 123(1), 81-90. https://doi.org/10.1016/S0378-1127(99)00017-1
Chavan, B. L., and Rasal, G. B. (2010). Sequestered standing carbon stock in selective tree species grown in University campus at Aurangabad, Maharashtra, India. International Journal of Engineering Science and Technology, 2(7), 3003-3007. ISSN: 0975-5462
Chavan, B., and Rasal, G. (2012). Total sequestered carbon stock of Mangifera indica. Journal of Environment and Earth science, 2(1), 37-48. ISSN: 2249-4596
Chavan, B. L., and Rasal, G. B. (2011). Potentiality of Carbon Sequestration in six year ages young plant from University campus of Aurangabad. Global Journal of
Research In Engineering, 11(7-C), 15-20. ISSN: 2225-0948
Chauhan, S. K., Singh, S., Sharma, S., Sharma, R., andSaralch, H. S. (2019). Tree biomass and carbon sequestration in four short rotation tree plantations. Range Manag. Agrofor, 40, 77-82.
Chauhan, S. K., Sharma, R., Singh, B. and Sharma, S. C. (2015). Biomass production, carbon sequestration and economics of on-farm poplar plantations in Punjab, India. Journal of Applied and Natural Science, 7(1), 452-458. https://doi.org/10.31018/jans.v7i1.631
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., and Lescure, J. P. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia. 145(1), 87-99. https://doi.org/10.1007/s00442-005-0100-x
Clark, D. B. and Kellner, J. R. (2012). Tropical forest biomass estimation and the fallacy of misplaced concreteness. Journal of Vegetation Science, 23(6), 1191-1196.
Djomo, A. N., and Chimi, C. D. (2017). Tree allometric equations for estimation of above, below and total biomass in a tropical moist forest: Case study with application to remote sensing. Forest Ecology and Management, 391, 184-193. https://doi.org/10.1016/j.foreco.201 7.02.022
Di Porcia E Brugnera, M., Meunier, F., Longo, M., Krishna Moorthy, S. M., De Deurwaerder, H., Schnitzer, S. A., and Verbeeck, H. (2019). Modeling the impact of liana infestation on the demography and carbon cycle of tropical forests. Global change biology, 25(11), 3767-3780. https://doi.org/10.1111/gcb.14769
FAO. (2010). Global Forest Resources Assessment. Country report: United Republic of Tanzania, Dar es Salaam, Tanzania. 56pp.
Gupta, D. K., Bhatt, R. K., Keerthika, A., Shukla, A. K., Noor Mohamed, M. B., and Jangid, B. L. (2017). Wood specific gravity of trees in hot semi-arid zone of India: Diversity among species and relationship between stem and branches. Current Science, 113(8), 1597-600. https://doi.org/ 10.18520/cs/v113/i08/1597-1600
Hussain, S. (2019).How to Calculate the Cubic Feet of a Log" sciencing.com, https://sciencing.com/calculate-cubic-feet-log-6527592.html. 15 December 2020
Jones, I. L., DeWalt, S. J., Lopez, O. R., Bunnefeld, L., Pattison, Z., and Dent, D. H. (2019). Above-and belowground carbon stocks are decoupled in secondary tropical forests and are positively related to forest age and soil nutrients respectively. Science of The Total Environment, 697, 133987. https://doi.org/10.1016/j.scitote nv.201 9.133987
Kebede, B., and Soromessa, T. (2018). Allometric equations for aboveground biomass estimation of Olea europaea L. subsp. cuspidata in ManaAngetu Forest. Ecosystem Health and Sustainability, 4(1), 1-12. https://doi.org/10.1080/20964129.2018.1433951
King, D. A., Davies, S. J., Tan, S., and Noor, N. S. M. (2006). The role of wood density and stem support costs in the growth and mortality of tropical trees. Journal of Ecology. 94(3), 670-680. https://doi.org/10.1111/j.1365-27 45.2006.01112.x
Kushwaha, A., Kumar, A., and Khan. R.R. (2019). Developing an indirect method for tree volume estimation of mango Cultivar Dashehari. In: Abstracts of Progressive Horticulture Conclave (PHC-2019) on Futuristic Technologies in Horticulture, Indian Society of Horticultural Research and Development (ISHRD), Uttarakhand, during December 8-10, 2019, held at ICAR-Indian Institute of Sugarcane Research, Lucknow, India. Misra et al., (ed.) (2019), P-72.
Lewis, S. L., Edwards, D. P., and Galbraith, D. (2015). Increasing human dominance of tropical forests. Science, 349(6250), 827-832. https://doi.org/10.1 126/science.aaa9932
Malhi, Y., Wood, D., Baker, T. R., Wright, J., Phillips, O. L., Cochrane, T., and Higuchi, N. (2006). The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology, 12(7), 1107-1138. https://doi.org/10.1111/j.1365-2486.2006.01120.x
Molto, Q., Rossi, V., and Blanc, L. (2013). Error propagation in biomass estimation in tropical forests. Methods in Ecology and Evolution, 4(2), 175-183. https://doi.org/10.1 1 11/j.2041-210x.2012.00266.x
Ngo, K. M., Turner, B. L., Muller-Landau, H. C., Davies, S. J., Larjavaara, M., bin Nik Hassan, N. F., and Lum, S. (2013). Carbon stocks in primary and secondary tropical forests in Singapore. Forest Ecology and Management, 296. 81-89. https://doi.org/10.1016/j.foreco.2013.02.004
Panwar, P., Chauhan, S., Kaushal, R., Das, D. K., Arora, G., Chaturvedi, O. P., and Tewari, S. (2017). Carbon sequestration potential of poplar-based Agroforestry using the CO2FIX model in the Indo-Gangetic Region of India. Tropical Ecology, 58(2). ISSN: 0564-3295
Paul. S. (2014). Malihabad: In the land of famous Dussehri mangoes. Hindustan times. Downloaded on 20th Aug 2020 from www.hindustantimes.com/brunch/malihabad-in-the-land-of-famous-dussehri mangoes/story-eK976k3RHWo4HSeLjTLrAL.html
Rou?Méchainéj, M., Tanguy, A., Piponiot, C., Chave, J., andHérault, B. (2017). biomass: An r package for estimating above ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 8(9), 1163-1167. https://doi.org/10.1111/2041-210X.12753
Salunkha, O., Khare, P. K., Sahu, T. R., and Singh, S. (2016). Estimation of tree biomass reserves in tropical deciduous forests of Central India by Non-destructive approach. Tropical Ecology, 57(2), 153-161. ISSN: 0564-3295
Saral, A. M., Steffy Selcia, S., and Devi, K. (2017). Carbon storage and sequestration by trees in VIT University campus. In IOP Conference Series: Materials Science and Engineering (Vol. 263, p. 022008). https://doi.org/10.10 88/1757-899X/263/2/022008
Shi, L., and Liu, S. (2017). Methods of estimating forest biomass: A review. Biomass Volume Estimation and Valorization for Energy, 10, 65733. https://doi.org/10 .57 72/65733
Suryawanshi, M. N., Patel, A. R., Kale, T. S., and Patil, P. R. (2014). Carbon sequestration potential of tree species in the environment of North Maharashtra University Campus, Jalgaon (MS) India. Bioscience Discovery, 5(2), 175-179. ISSN: 2231-024X
The Indian Forest Act (1927). Downloaded on 2rd Jan 2020 from, http://nbaindia.org/uploaded/Biodiversityindia/Legal/3.%20Indian%20forest%20act.pdf.
Vashum, K. T., and Jayakumar, S. (2012). Methods to estimate above-ground biomass and carbon stock in natural forests-a review. Journal of Ecosystem and Ecography, 2(4), 1-7. https://doi.org/10.4172/2157-7625.10 00 116
Wikipedia contributors (2020). Tree measurement. In Wikipedia, The Free Encyclopedia. Retrieved 06:38, December 15, 2020, from https://en.wikipedia.org/w/index.php?title=Tree_measurementandoldid=991879163
Wirabuana, P., Setiahadi, R., Sadono, R., Lukito, M., Martono, D. S., and Matatula, J. (2020). Allometric equations for estimating biomass of community forest tree species in Madiun, Indonesia. Biodiversitas Journal of Biological Diversity, 21(9). DOI: 10.13057/biodiv/d210947
Section
Research Articles

How to Cite

A comparative assessment of Non-destructive and destructive methods for precise volume estimation of mango (Mangifera indica) trees. (2021). Journal of Applied and Natural Science, 13(1), 183-190. https://doi.org/10.31018/jans.v13i1.2480