Article Main

Addea Gupta Roopa Rani Samal Sarita Kumar

Abstract

Aedes aegypti, is a well-known vector of dengue, Chikungunya and Zika at the global level. Primary use of pyrethroids as control interventions has caused the development of a considerable level of immunity in Ae. aegypti. The current study assessed the efficacy of a pyrethroid, ?-cypermethrin on the survival and various life parameters of Ae. aegypti. The larvicidal studies with ?-cypermethrin revealed the respective LC50 and LC90 values as 0.26526 mg/L and 0.60211 mg/L. The impact of LC50 level was assessed on the growth and life attributes; such as gonotrophic cycle, egg development, hatchability, development and survival of immature stages, adult longevity, reproduction rate and generation time; of fourth instar of susceptible (S) and ?-cypermethrin-exposed population (E). The exposed population showed diminished fitness as compared to the susceptible population. The individual female fecundity in susceptible population was recorded as 79.6 with 61.6% hatchability rate as compared to the 28 eggs/female and 25% hatchability in the exposed population. The mean egg hatch time in S strain increased by 2-fold in E strain. The proportion of immature survival observed in S strain was 0.88 for fourth instar to pupa (P/I), 0.94 for pupa to adult (A/P) and an overall 0.83 for fourth larva to adult (A/I), which respectively reduced to 0.32, 0.86 and 0.27 in E strain of Ae. aegypti. Likewise, the net reproductive rate, birth rate and death rate were significantly (p < 0.05) higher in S than in E strain. This study demonstrates the negative impact of ?-cypermethrin on the physiological and reproductive fitness of Ae. aegypti.

Article Details

Article Details

Keywords

Aedes, Alpha-cypermethrin, Life-table, Pyrethroids, Larvicidal

References
Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. J Econ. Entomol. 18(2),265-267. https://doi.org/10.1093/jee/18.2.265a.
Achee, N.L., Grieco, J.P., Vatandoost, H., Seixas, G., Pinto, J., Ching-NG, L., Martins, A.J., Juntarajumnong, W., Corbel, V., Gouagna, C., David, J.P., Logan, J.G., Orsborne, J., Marois, E., Devine, G.J. & Vontas, J. (2019). Correction: Alternative strategies for mosquito-borne arbovirus control. PLOS Neglect. Trop. Dis. 13(3), e0007275. https://doi.org/10.1371/journal.pntd.0007275.
Alvarez-Gonzalez, L.C., Briceño, A., Ponce-Garcia, G., Villanueva-Segura, O.K., Davila-Barboza, J.A., Lopez-Monroy, B., Gutierrez-Rodriguez, S.M., Contreras-Perera, Y., Rodriguez-Sanchez, I.P. & Flores, A.E. (2017). Assessing the effect of selection with deltamethrin on biological parameters and detoxifying enzymes in Aedes aegypti (L.).  Pest. Manag. Sci., 739(11),2287–2293. https://doi.org/10.1002/ps.4609.
Amalraj, D., Ramaiah, K.D., Rajavel, A.R., Mariappan, T. & Vasuki, V. (1987). Evaluation of alphamethrin, a synthetic pyrethroid for insecticidal activity against mosquitoes. Ind. J. Med. Res. 86, 601-609.
Belinato, T.A., Martins, A.J. & Valle, D. (2012). Fitness evaluation of two Brazilian Aedes aegypti field populations with distinct levels of resistance to the organophosphate temephos.  Mem. Inst. Oswaldo. Cruz. 107(7),916–922. https://doi.org/10.1590/s0074-02762012000700013.
Benelli, G., Jeffries, J. & Walker, T. (2016). Biological control of mosquito vectors: Past, present, and future. Insects. 7(4), 52. https:// doi: 10.3390/insects7040052.
Berticat, C., Durin, O., Heyse, D. & Raymond, M. (2004). Insecticide resistance genes confer a predation cost on mosquitoes, Culex pipiens. Genet. Res. 83,189-196. https://doi: 10.1017/s00166723040067 92.
Berticat, C., Bonnet, J., Duchon, S., Agnew, P., Weill, M. & Corbel. V. (2008). Costs and benefits of multiple resistance to insecticides for Culex quinquefasciatus mosquitoes. BMC Evol. Biol. 8(1),104. https://doi.org/10.1186/1471-2148-8-104.
Brito, L.P., Linss, J.G., Lima-Camara, T.N., Belinato, T.A., Peixoto, A.A., Lima, J.B., Valle, D. & Martins, A.J. (2013). Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost, PLoS One. 8(4),e60878. https://doi.org/10.1371/journal.pone.0060878.
Charlwood, J.D. (2004). “May the force be with you: measuring mosquito fitness in the field,” In: Ecological Aspects for Application of Genetically Modified Mosquitoes, Takken, W.; Scott, T.W. (Eds.), Frontis, pp 47-62. https://doi.org/10.1093/acprof:oso/9780 195157468.0033.0013.
Diniz, D.F., Melo-Santos, M.A., de Mendonca Santos, E.M., Beserra, E.B., Helvecio, E., de Carvalho-Leandro, dos Santos, B.S., de Menezes Lima, V.L. & Ayres, C.F. (2015). Fitness cost in field and laboratory Aedes aegypti populations associated with resistance to the insecticide temephos. Parasites & Vectors. 8(1),662-677. https://doi.org/10.1186/s13071-015-1276-5.
Dong K (2007). Insect sodium channels and insecticide resistance. Invert. Neurosci. 7, 17. doi: 10.1007/s10158-006-0036-9.
Ffrench-Constant, R. & Bass, C. (2017). Does resistance really carry a fitness cost? Curr. Opinion Ins. Sci. 21,39-46. https://doi.org/10.1016/j.cois.20 17.04.011.
Foster, S.P., Young, S., Williamson, M.S., Duce, I., Denholm, I. & Devine, G.J. (2003). Analogous pleiotropic effects of insecticide resistance genotypes in peach-potato aphids and houseflies. Heredity. 91(2),98–106. https://doi.org/10.1038/sj.hdy.6800285.
Jaramillo-O, N., Fonseca-Gonzalez, I. & Chaverra-Rodriguez, D. (2014). Geometric morphometrics of nine field isolates of Aedes aegypti with different resistance levels to lambda-cyhalothrin and relative fitness of one artificially selected for resistance. PLoS One. 9(5),e96379. https://doi.org/10.1371/journal.pone.0096379.
Kliot, A. & Ghanim, M. (2012). Fitness costs associated with insecticide resistance. Pest. Manag. Sci., 68(11),1431-1437. https://doi.org/10.1002/ps.3395.
Kumar, S., Thomas, A., Sahgal, A., Verma, A., Samuel, T. & Pillai, M.K.K. (2002). Effect of the synergist, piperonyl butoxide, on the development of deltamethrin resistance in yellow fever mosquito, Aedes aegypti L. (Diptera: Culicidae). Arch. Insect. Biochem. Physiol. 50(1),1-8. https://doi.org/10.1002/arch.10021.
Kumar, S., Thomas, A., Samuel, T., Saghal, A., Verma, A. & Pillai, M.K.K. (2009). Diminished reproductive fitness associated with the deltamethrin resistance in an Indian strain of dengue vector mosquito Aedes aegypti L. Trop. Biomed. 26(2),55-64.
Mebrahtu, Y.B., Norem, J. & Taylor, M. (1997). Inheritance of larval resistance to permethrin in Aedes aegypti and association with sex ratio distortion and life history variation. Am. J. Trop. Med. Hyg. 56(4),456-465. https://doi.org/10.4269/ajtmh.1997.5 6.456.
Melo-Santos, M.A., Varjal-Melo, J.J., Araujo, A.P., Gomes, T.C., Paiva, M.H., Regis, L.N., Furtado, A.F., Magalhaes, T., Macoris, M.L., Andrighetti, M.T. & Ayres, C.F. (2010). Resistance to the organophosphate temephos: mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Tropica. 113(2), 180–189. https://doi.org/10.1016/j.actatropica.2009.10.0 15.
NVBDCP (2020a). Dengue/DHF situation in India [Online]. National Vector Borne Disease Control Programme (NVBDCP) Available at: https://nvbdcp.gov.in/index4.php?lang=1&level=0&linkid=431&lid=3715 (Accessed on December 25, 2020).
NVBDCP (2020b). Chikungunya situation in India [Online]. National Vector Borne Disease Control Programme (NVBDCP) Available at: https://nvbdcp.gov.in/index4.php?lang=1&level=0&linkid=431&lid=3715 (Accessed on December 25, 2020).
Pettit, W.J., Whelan, P.I., McDonnell, J. & Jacups, S.P. (2010). Efficacy of alpha-cypermethrin and lambda-cyhalothrin applications to prevent Aedes breeding in tires. J. Am. Mosq. Control. Assoc. 26(4), 387-397. https://doi.org/10.2987/09-5962.1.
Raghavendra, K., Verma, V., Srivastava, H. C., Gunasekaran, K., Sreehari, U. & Dash, A. P. (2010). Persistence of DDT, malathion & deltamethrin resistance in Anopheles culicifacies after their sequential withdrawal from indoor residual spraying in Surat district, India. Ind. J Med. Res. 132(3),260-264.
Rigby, L.M., Raši?, G., Peatey, C.L., Hugo, L.E., Beebe, N. W. & Devine, G. J. (2020). Identifying the fitness costs of a pyrethroid-resistant genotype in the major arboviral vector Aedes aegypti. Parasites & Vectors. 13,358. https://doi.org/10.1186/s13071-020-04238-4
Rinkevich, F. D., Du, Y. & Dong, K. (2013). Diversity and convergence of sodium channel mutations involved in resistance to pyrethroids. Pestic. Biochem. Physiol., 106(3),93-100. 10.1016/j.pestbp.20 13.02.007.
Rivero, A., Vezilier, J., Weill, M., Read, A.F. & Gandon S. (2010). Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathogens. 6(8), e1001000. https://doi.org/10.1371/journal.ppa t.1001000.
Saingamsook, J., Yanola, J., Lumjuan, N., Walton, C. & Somboon, P. (2019). Investigation of relative development and reproductivity fitness cost in three insecticide-resistant strains of Aedes aegypti from Thailand. Insects, 10(9):265. https://doi.org/10.33 90/insects10090265.
Samal, R.R. & Kumar, S. (2018). Susceptibility status of Aedes aegypti L. against different classes of insecticides in New Delhi, India to formulate mosquito control strategy in fields. Open Parasitol. J., 6(1), 52-62. https://doi.org/10.2174/187442 14018060 10052
Samal, R.R. & Kumar, S.  (2020). Cuticular thickening associated with insecticide resistance in dengue vector, Aedes aegypti L. Int. J. Trop. Insect. Sci. https://doi.org/10.1007/s42690-020-00271-z
Sowilem, M.M., Kamal, H.A. & Khater, E.I. (2013). Life table characteristics of Aedes aegypti (Diptera: Culicidae) from Saudi Arabia. Trop. Biomed. 30(2),301-314
Warikoo, R., Ray, A., Sandhu, J.K., Samal, R., Wahab, N. & Kumar, S. (2012). Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti L. Asian Pac. J. Trop. Biomed., 2(2), 152-155. https://doi.org/10.1016/s2221-1691(11)6021 1-6
World Health Organization (1998). Global insecticides use for vector-borne disease control. Fourth Edition. pp: 1-83. https://apps.who.int/iris/bitstream/handle/10665/44 220/9789241598781_eng.pdf?sequence=1
World Health Organization (2009). Guidelines for efficacy testing of household insecticide products: mosquito coils, vaporizer mats, liquid vaporizers, ambient emanators and aerosols. Editors: Dr R. Zaim/WHOPES, 32 pp. WHO/HTM/NTD/WHOP ES/2009.3
World Health Organization (2016). Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Second Edition. 56 pp. https://www.who.int/malaria/publications/atoz/9789241511575/en/
Section
Research Articles

How to Cite

Physiological and reproductive fitness cost in Aedes aegypti on exposure to toxic xenobiotics in New Delhi, India. (2021). Journal of Applied and Natural Science, 13(1), 71-78. https://doi.org/10.31018/jans.v13i1.2470