Physiological and reproductive fitness cost in Aedes aegypti on exposure to toxic xenobiotics in New Delhi, India
##plugins.themes.bootstrap3.article.main##
Abstract
Aedes aegypti, is a well-known vector of dengue, Chikungunya and Zika at the global level. Primary use of pyrethroids as control interventions has caused the development of a considerable level of immunity in Ae. aegypti. The current study assessed the efficacy of a pyrethroid, ?-cypermethrin on the survival and various life parameters of Ae. aegypti. The larvicidal studies with ?-cypermethrin revealed the respective LC50 and LC90 values as 0.26526 mg/L and 0.60211 mg/L. The impact of LC50 level was assessed on the growth and life attributes; such as gonotrophic cycle, egg development, hatchability, development and survival of immature stages, adult longevity, reproduction rate and generation time; of fourth instar of susceptible (S) and ?-cypermethrin-exposed population (E). The exposed population showed diminished fitness as compared to the susceptible population. The individual female fecundity in susceptible population was recorded as 79.6 with 61.6% hatchability rate as compared to the 28 eggs/female and 25% hatchability in the exposed population. The mean egg hatch time in S strain increased by 2-fold in E strain. The proportion of immature survival observed in S strain was 0.88 for fourth instar to pupa (P/I), 0.94 for pupa to adult (A/P) and an overall 0.83 for fourth larva to adult (A/I), which respectively reduced to 0.32, 0.86 and 0.27 in E strain of Ae. aegypti. Likewise, the net reproductive rate, birth rate and death rate were significantly (p < 0.05) higher in S than in E strain. This study demonstrates the negative impact of ?-cypermethrin on the physiological and reproductive fitness of Ae. aegypti.
##plugins.themes.bootstrap3.article.details##
##plugins.themes.bootstrap3.article.details##
Aedes, Alpha-cypermethrin, Life-table, Pyrethroids, Larvicidal
Achee, N.L., Grieco, J.P., Vatandoost, H., Seixas, G., Pinto, J., Ching-NG, L., Martins, A.J., Juntarajumnong, W., Corbel, V., Gouagna, C., David, J.P., Logan, J.G., Orsborne, J., Marois, E., Devine, G.J. & Vontas, J. (2019). Correction: Alternative strategies for mosquito-borne arbovirus control. PLOS Neglect. Trop. Dis. 13(3), e0007275. https://doi.org/10.1371/journal.pntd.0007275.
Alvarez-Gonzalez, L.C., Briceño, A., Ponce-Garcia, G., Villanueva-Segura, O.K., Davila-Barboza, J.A., Lopez-Monroy, B., Gutierrez-Rodriguez, S.M., Contreras-Perera, Y., Rodriguez-Sanchez, I.P. & Flores, A.E. (2017). Assessing the effect of selection with deltamethrin on biological parameters and detoxifying enzymes in Aedes aegypti (L.). Pest. Manag. Sci., 739(11),2287–2293. https://doi.org/10.1002/ps.4609.
Amalraj, D., Ramaiah, K.D., Rajavel, A.R., Mariappan, T. & Vasuki, V. (1987). Evaluation of alphamethrin, a synthetic pyrethroid for insecticidal activity against mosquitoes. Ind. J. Med. Res. 86, 601-609.
Belinato, T.A., Martins, A.J. & Valle, D. (2012). Fitness evaluation of two Brazilian Aedes aegypti field populations with distinct levels of resistance to the organophosphate temephos. Mem. Inst. Oswaldo. Cruz. 107(7),916–922. https://doi.org/10.1590/s0074-02762012000700013.
Benelli, G., Jeffries, J. & Walker, T. (2016). Biological control of mosquito vectors: Past, present, and future. Insects. 7(4), 52. https:// doi: 10.3390/insects7040052.
Berticat, C., Durin, O., Heyse, D. & Raymond, M. (2004). Insecticide resistance genes confer a predation cost on mosquitoes, Culex pipiens. Genet. Res. 83,189-196. https://doi: 10.1017/s00166723040067 92.
Berticat, C., Bonnet, J., Duchon, S., Agnew, P., Weill, M. & Corbel. V. (2008). Costs and benefits of multiple resistance to insecticides for Culex quinquefasciatus mosquitoes. BMC Evol. Biol. 8(1),104. https://doi.org/10.1186/1471-2148-8-104.
Brito, L.P., Linss, J.G., Lima-Camara, T.N., Belinato, T.A., Peixoto, A.A., Lima, J.B., Valle, D. & Martins, A.J. (2013). Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost, PLoS One. 8(4),e60878. https://doi.org/10.1371/journal.pone.0060878.
Charlwood, J.D. (2004). “May the force be with you: measuring mosquito fitness in the field,” In: Ecological Aspects for Application of Genetically Modified Mosquitoes, Takken, W.; Scott, T.W. (Eds.), Frontis, pp 47-62. https://doi.org/10.1093/acprof:oso/9780 195157468.0033.0013.
Diniz, D.F., Melo-Santos, M.A., de Mendonca Santos, E.M., Beserra, E.B., Helvecio, E., de Carvalho-Leandro, dos Santos, B.S., de Menezes Lima, V.L. & Ayres, C.F. (2015). Fitness cost in field and laboratory Aedes aegypti populations associated with resistance to the insecticide temephos. Parasites & Vectors. 8(1),662-677. https://doi.org/10.1186/s13071-015-1276-5.
Dong K (2007). Insect sodium channels and insecticide resistance. Invert. Neurosci. 7, 17. doi: 10.1007/s10158-006-0036-9.
Ffrench-Constant, R. & Bass, C. (2017). Does resistance really carry a fitness cost? Curr. Opinion Ins. Sci. 21,39-46. https://doi.org/10.1016/j.cois.20 17.04.011.
Foster, S.P., Young, S., Williamson, M.S., Duce, I., Denholm, I. & Devine, G.J. (2003). Analogous pleiotropic effects of insecticide resistance genotypes in peach-potato aphids and houseflies. Heredity. 91(2),98–106. https://doi.org/10.1038/sj.hdy.6800285.
Jaramillo-O, N., Fonseca-Gonzalez, I. & Chaverra-Rodriguez, D. (2014). Geometric morphometrics of nine field isolates of Aedes aegypti with different resistance levels to lambda-cyhalothrin and relative fitness of one artificially selected for resistance. PLoS One. 9(5),e96379. https://doi.org/10.1371/journal.pone.0096379.
Kliot, A. & Ghanim, M. (2012). Fitness costs associated with insecticide resistance. Pest. Manag. Sci., 68(11),1431-1437. https://doi.org/10.1002/ps.3395.
Kumar, S., Thomas, A., Sahgal, A., Verma, A., Samuel, T. & Pillai, M.K.K. (2002). Effect of the synergist, piperonyl butoxide, on the development of deltamethrin resistance in yellow fever mosquito, Aedes aegypti L. (Diptera: Culicidae). Arch. Insect. Biochem. Physiol. 50(1),1-8. https://doi.org/10.1002/arch.10021.
Kumar, S., Thomas, A., Samuel, T., Saghal, A., Verma, A. & Pillai, M.K.K. (2009). Diminished reproductive fitness associated with the deltamethrin resistance in an Indian strain of dengue vector mosquito Aedes aegypti L. Trop. Biomed. 26(2),55-64.
Mebrahtu, Y.B., Norem, J. & Taylor, M. (1997). Inheritance of larval resistance to permethrin in Aedes aegypti and association with sex ratio distortion and life history variation. Am. J. Trop. Med. Hyg. 56(4),456-465. https://doi.org/10.4269/ajtmh.1997.5 6.456.
Melo-Santos, M.A., Varjal-Melo, J.J., Araujo, A.P., Gomes, T.C., Paiva, M.H., Regis, L.N., Furtado, A.F., Magalhaes, T., Macoris, M.L., Andrighetti, M.T. & Ayres, C.F. (2010). Resistance to the organophosphate temephos: mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Tropica. 113(2), 180–189. https://doi.org/10.1016/j.actatropica.2009.10.0 15.
NVBDCP (2020a). Dengue/DHF situation in India [Online]. National Vector Borne Disease Control Programme (NVBDCP) Available at: https://nvbdcp.gov.in/index4.php?lang=1&level=0&linkid=431&lid=3715 (Accessed on December 25, 2020).
NVBDCP (2020b). Chikungunya situation in India [Online]. National Vector Borne Disease Control Programme (NVBDCP) Available at: https://nvbdcp.gov.in/index4.php?lang=1&level=0&linkid=431&lid=3715 (Accessed on December 25, 2020).
Pettit, W.J., Whelan, P.I., McDonnell, J. & Jacups, S.P. (2010). Efficacy of alpha-cypermethrin and lambda-cyhalothrin applications to prevent Aedes breeding in tires. J. Am. Mosq. Control. Assoc. 26(4), 387-397. https://doi.org/10.2987/09-5962.1.
Raghavendra, K., Verma, V., Srivastava, H. C., Gunasekaran, K., Sreehari, U. & Dash, A. P. (2010). Persistence of DDT, malathion & deltamethrin resistance in Anopheles culicifacies after their sequential withdrawal from indoor residual spraying in Surat district, India. Ind. J Med. Res. 132(3),260-264.
Rigby, L.M., Raši?, G., Peatey, C.L., Hugo, L.E., Beebe, N. W. & Devine, G. J. (2020). Identifying the fitness costs of a pyrethroid-resistant genotype in the major arboviral vector Aedes aegypti. Parasites & Vectors. 13,358. https://doi.org/10.1186/s13071-020-04238-4
Rinkevich, F. D., Du, Y. & Dong, K. (2013). Diversity and convergence of sodium channel mutations involved in resistance to pyrethroids. Pestic. Biochem. Physiol., 106(3),93-100. 10.1016/j.pestbp.20 13.02.007.
Rivero, A., Vezilier, J., Weill, M., Read, A.F. & Gandon S. (2010). Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathogens. 6(8), e1001000. https://doi.org/10.1371/journal.ppa t.1001000.
Saingamsook, J., Yanola, J., Lumjuan, N., Walton, C. & Somboon, P. (2019). Investigation of relative development and reproductivity fitness cost in three insecticide-resistant strains of Aedes aegypti from Thailand. Insects, 10(9):265. https://doi.org/10.33 90/insects10090265.
Samal, R.R. & Kumar, S. (2018). Susceptibility status of Aedes aegypti L. against different classes of insecticides in New Delhi, India to formulate mosquito control strategy in fields. Open Parasitol. J., 6(1), 52-62. https://doi.org/10.2174/187442 14018060 10052
Samal, R.R. & Kumar, S. (2020). Cuticular thickening associated with insecticide resistance in dengue vector, Aedes aegypti L. Int. J. Trop. Insect. Sci. https://doi.org/10.1007/s42690-020-00271-z
Sowilem, M.M., Kamal, H.A. & Khater, E.I. (2013). Life table characteristics of Aedes aegypti (Diptera: Culicidae) from Saudi Arabia. Trop. Biomed. 30(2),301-314
Warikoo, R., Ray, A., Sandhu, J.K., Samal, R., Wahab, N. & Kumar, S. (2012). Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti L. Asian Pac. J. Trop. Biomed., 2(2), 152-155. https://doi.org/10.1016/s2221-1691(11)6021 1-6
World Health Organization (1998). Global insecticides use for vector-borne disease control. Fourth Edition. pp: 1-83. https://apps.who.int/iris/bitstream/handle/10665/44 220/9789241598781_eng.pdf?sequence=1
World Health Organization (2009). Guidelines for efficacy testing of household insecticide products: mosquito coils, vaporizer mats, liquid vaporizers, ambient emanators and aerosols. Editors: Dr R. Zaim/WHOPES, 32 pp. WHO/HTM/NTD/WHOP ES/2009.3
World Health Organization (2016). Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Second Edition. 56 pp. https://www.who.int/malaria/publications/atoz/9789241511575/en/
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)