Article Main

D. M. Agase S. B. Zade T.S. Kothe

Abstract

SNAREs (Soluble N-Ethylmaleimide-Sensitive Fusion Protein Attachment Protein Receptor) are a class of membrane proteins that mediate membrane-membrane fusion in eukaryotic cells. SNAP-23 is a t-SNARE which is a component of cellular machinery is required for membrane fusion. SNAP-23 lacks transmembrane domain. Cysteines in the linker region of SNAP-23 are involved in targeting of SNAP-23 to the membrane. In the present work, a portion of MDR3 gene (MDR3 1-145) and CLP24 (CLP134-195) was subcloned into a plasmid encoding EGFP-SNAP-23 Cys- mutant for the generation of a fusion protein containing the two functional coiled-coil domain of t-SNARE, SNAP 23 and a transmembrane domain of MDR3 gene and CLP24 for mast cell. This fusion protein will be important to study the membrane targeting and raft association of the chimeric SNAP23 protein, which plays an important role in mast cell exocytosis in the mammalian system. A novel bioinformatics approach has been applied to identify the specific transmembrane domain. This novel approach can be used to construct other fusion proteins.

Article Details

Article Details

Keywords

EGFP, Exocytosis, Fusion Protein, Mast cell, MDR3, SNAREs, SNAP23

References
Agarwal, V., Naskar, P., Agasti S.,  Khurana, G.P., Vishwakarma, P., Lynn,  A.M.,  Roche,  P.A, and Puri,  N., (2019). The cysteine-rich domain of synaptosomal-associated protein of 23 kDa (SNAP-23) regulates its membrane association and regulated exocytosis from mast cells, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1866:1618-1633. https://doi.org/1 0.1016/j.bbamcr.2019.06.015.
Bark I.C., and Wilson, M.C., (1994). Human cDNA clones encoding two different isoforms of the nerve terminal protein SNAP-25, Gene, 139: 291–292. https://doi.org/10.1016/0378-1119(94)90773-0.
Buxton, P., Zhang, X. M., Walsh, B., Sriratana, A., Schenberg, I., Manickam, E. and Rowe, T. (2003) Identification and characterization of Snapin as a ubiquitously expressed SNARE-binding protein that interacts with SNAP23 in non-neuronal cells, Biochem. J, 375:433–440. https://doi.org/10.1042/bj20030427.
Cabaniols, J., Ravichandran, V., and Roche P.A. (1999). Phosphorylation of SNAP-23 by the novel kinase SNAK regulates t-SNARE complex, Mol. Biol. Cell, 10:4033-4041. doi: 10.1242/bio.025791.
Chen YA., and Scheller, R.H. (2001). SNARE-mediated membrane fusion, Nature Reviews Molecular Cell Biology, 2: 98-106. https://doi.org/10.1038/35052017.
Chomczynski, P., and Sacchi, N. (1987) Single-step method of RNA isolation by acid thiocyanate-phenol-chloroform extraction, Analytical Biochemistry, 62:156-9. https://doi.org/10.1016/0003-2697(87)90021-2.
Han, J., Pluhackova, K. and Bockmann, R. A. (2017). The multifaceted role of SNARE proteins in membrane fusion, Frontiers in Physiology, 8: 1-17. https://doi.org/10.3389/fphys.2017.00005.
Hepp, R., Puri N., Hohenstein, A.C., Crawford, Whiteheart, G.L., and Roche P.A., (2005). Phosphorylation of SNAP-23 regulates exocytosis from mast cells, J. Biol. Chem, 280:6610-6620. DOI 10.1074/jbc.M412126200.
Jahn, R., and Scheller, R. (2006). SNAREs — engines for membrane fusion, Nature Reviews Molecular Cell Biology, 7:631-643. https://doi.org/10.1038/nrm2002.
Kahsay, R.Y., Guang, G., and Liao, L. (2005). An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes, Bioinformatics, 21:1853-8. https://doi.org/10.1093/bioinformatics/bti303.
Klein, O.,  Roded, A., Zur N., Puri, N.,  Pasternak, O.,  Hirschberg, K., Hammel, I., Roche, P.A., Yatsu, A., Fukuda M., Galli S.J., Eisenberg R.S., (2017). Rab5 is critical for SNAP23 regulated granule-granule fusion during compound exocytosis, Scientific Reporter, 7 :1-17. DOI:10.1038/s41598-017-15047-8.
Naskar, P., and Puri, N., (2017). Phosphorylation of SNAP-23 regulates its dynamic membrane association during mast cell exocytosis, Biology Open, 6 :1257-1269. doi: 10.1242/bio.025791.
Pierleoni, A., and Martelli, P.L., (2008). PredGPI: a GPI-anchor predictor. BMC Bioinformatics, 9 :1-11. https://doi.org/10.1186/1471-2105-9-392.
Blumenthal, R., Michael, J.C., Stewart, R.D., and  Richard, M.E. (2003). Membrane Fusion, Chem. Rev, 103:53-69. https://doi.org/10.1021/cr000036+
Ramakrishnan, N.A, Drescher, M. J. and Drescher, D.G. (2012). The SNARE complex in neuronal and sensory cells, Mol Cell Neurosci, 50:58-69. https://doi.org/10.1016/j.mcn.2012.03.009.
Sakuraia, C., Hashimotoa, H., Nakanishia, H., Araia, S., Wadab, Y., Wadac, G., Wadaa, I., and Hatsuzawaa, K. (20012). SNAP-23 regulates phagosome formation and maturation in macrophages, Molecular Biology of the Cell, 23: 4849-4863. https://doi.org/10.1091/mbc.e12-01-0069.
Suh, Y.H., Yoshimoto F.A, Weih K.A., Tessarollo L, Roche K.W, Mackem S., Roche P.A. (2001). Deletion of SNAP-23 results in pre-implantation embryonic lethality in mice, PLoS One, 6: e18444. https://doi.org/10.1371/journal.pone.0018444.
Suzuki K., and Verma I.M., (2008). Phosphorylation of SNAP-23 by IkB Kinase 2 Regulates Mast Cell Degranulation, Cell, 134: 485-495. https://doi.org/10.1016/j.cell.2008.05.050.
Section
Research Articles

How to Cite

Generation of a fusion protein containing the two functional coiled-coil domain of t- SNARE, SNAP-23 and a transmembrane domain for mast cell . (2020). Journal of Applied and Natural Science, 12(4), 670-674. https://doi.org/10.31018/jans.v12i4.2439