Generation of a fusion protein containing the two functional coiled-coil domain of t- SNARE, SNAP-23 and a transmembrane domain for mast cell
Article Main
Abstract
SNAREs (Soluble N-Ethylmaleimide-Sensitive Fusion Protein Attachment Protein Receptor) are a class of membrane proteins that mediate membrane-membrane fusion in eukaryotic cells. SNAP-23 is a t-SNARE which is a component of cellular machinery is required for membrane fusion. SNAP-23 lacks transmembrane domain. Cysteines in the linker region of SNAP-23 are involved in targeting of SNAP-23 to the membrane. In the present work, a portion of MDR3 gene (MDR3 1-145) and CLP24 (CLP134-195) was subcloned into a plasmid encoding EGFP-SNAP-23 Cys- mutant for the generation of a fusion protein containing the two functional coiled-coil domain of t-SNARE, SNAP 23 and a transmembrane domain of MDR3 gene and CLP24 for mast cell. This fusion protein will be important to study the membrane targeting and raft association of the chimeric SNAP23 protein, which plays an important role in mast cell exocytosis in the mammalian system. A novel bioinformatics approach has been applied to identify the specific transmembrane domain. This novel approach can be used to construct other fusion proteins.
Article Details
Article Details
EGFP, Exocytosis, Fusion Protein, Mast cell, MDR3, SNAREs, SNAP23
Bark I.C., and Wilson, M.C., (1994). Human cDNA clones encoding two different isoforms of the nerve terminal protein SNAP-25, Gene, 139: 291–292. https://doi.org/10.1016/0378-1119(94)90773-0.
Buxton, P., Zhang, X. M., Walsh, B., Sriratana, A., Schenberg, I., Manickam, E. and Rowe, T. (2003) Identification and characterization of Snapin as a ubiquitously expressed SNARE-binding protein that interacts with SNAP23 in non-neuronal cells, Biochem. J, 375:433–440. https://doi.org/10.1042/bj20030427.
Cabaniols, J., Ravichandran, V., and Roche P.A. (1999). Phosphorylation of SNAP-23 by the novel kinase SNAK regulates t-SNARE complex, Mol. Biol. Cell, 10:4033-4041. doi: 10.1242/bio.025791.
Chen YA., and Scheller, R.H. (2001). SNARE-mediated membrane fusion, Nature Reviews Molecular Cell Biology, 2: 98-106. https://doi.org/10.1038/35052017.
Chomczynski, P., and Sacchi, N. (1987) Single-step method of RNA isolation by acid thiocyanate-phenol-chloroform extraction, Analytical Biochemistry, 62:156-9. https://doi.org/10.1016/0003-2697(87)90021-2.
Han, J., Pluhackova, K. and Bockmann, R. A. (2017). The multifaceted role of SNARE proteins in membrane fusion, Frontiers in Physiology, 8: 1-17. https://doi.org/10.3389/fphys.2017.00005.
Hepp, R., Puri N., Hohenstein, A.C., Crawford, Whiteheart, G.L., and Roche P.A., (2005). Phosphorylation of SNAP-23 regulates exocytosis from mast cells, J. Biol. Chem, 280:6610-6620. DOI 10.1074/jbc.M412126200.
Jahn, R., and Scheller, R. (2006). SNAREs — engines for membrane fusion, Nature Reviews Molecular Cell Biology, 7:631-643. https://doi.org/10.1038/nrm2002.
Kahsay, R.Y., Guang, G., and Liao, L. (2005). An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes, Bioinformatics, 21:1853-8. https://doi.org/10.1093/bioinformatics/bti303.
Klein, O., Roded, A., Zur N., Puri, N., Pasternak, O., Hirschberg, K., Hammel, I., Roche, P.A., Yatsu, A., Fukuda M., Galli S.J., Eisenberg R.S., (2017). Rab5 is critical for SNAP23 regulated granule-granule fusion during compound exocytosis, Scientific Reporter, 7 :1-17. DOI:10.1038/s41598-017-15047-8.
Naskar, P., and Puri, N., (2017). Phosphorylation of SNAP-23 regulates its dynamic membrane association during mast cell exocytosis, Biology Open, 6 :1257-1269. doi: 10.1242/bio.025791.
Pierleoni, A., and Martelli, P.L., (2008). PredGPI: a GPI-anchor predictor. BMC Bioinformatics, 9 :1-11. https://doi.org/10.1186/1471-2105-9-392.
Blumenthal, R., Michael, J.C., Stewart, R.D., and Richard, M.E. (2003). Membrane Fusion, Chem. Rev, 103:53-69. https://doi.org/10.1021/cr000036+
Ramakrishnan, N.A, Drescher, M. J. and Drescher, D.G. (2012). The SNARE complex in neuronal and sensory cells, Mol Cell Neurosci, 50:58-69. https://doi.org/10.1016/j.mcn.2012.03.009.
Sakuraia, C., Hashimotoa, H., Nakanishia, H., Araia, S., Wadab, Y., Wadac, G., Wadaa, I., and Hatsuzawaa, K. (20012). SNAP-23 regulates phagosome formation and maturation in macrophages, Molecular Biology of the Cell, 23: 4849-4863. https://doi.org/10.1091/mbc.e12-01-0069.
Suh, Y.H., Yoshimoto F.A, Weih K.A., Tessarollo L, Roche K.W, Mackem S., Roche P.A. (2001). Deletion of SNAP-23 results in pre-implantation embryonic lethality in mice, PLoS One, 6: e18444. https://doi.org/10.1371/journal.pone.0018444.
Suzuki K., and Verma I.M., (2008). Phosphorylation of SNAP-23 by IkB Kinase 2 Regulates Mast Cell Degranulation, Cell, 134: 485-495. https://doi.org/10.1016/j.cell.2008.05.050.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)