An overview of anthropogenic electromagnetic radiations as risk to pollinators and pollination
Article Main
Abstract
Pollinators play a key functional role in most terrestrial ecosystems and provide important ecosystem service to maintain wild plant communities and agricultural productivity. The decline in pollinators has been related to anthropogenic disturbances such as habitat loss, alterations in land use, and climate change. The surge in mobile telephony has led to a marked increase in electromagnetic fields in the atmosphere, which may affect pollinator and pollination. Several laboratory studies have reported negative effects of electromagnetic radiation on reproduction, development, and navigation in insects. The abundance of insects such as the beetle, wasp, and hoverfly, decreased with electromagnetic radiation(EMR), whereas the abundance of underground-nesting wild bees and bee fly unexpectedly increased with EMR. Potential risks for pollinators and biodiversity are anthropogenic radiofrequency electromagnetic radiation (AREMR) (light, radiofrequency). Artificial light at night (ALAN) can alter the function and abundance of pollinator. Evidence of impacts of AREMR is not adequate due to a lack of high quality, field-realistic studies. Whether pollinators experiencing a threat of ALAN or AREMR, while major knowledge gap exists. In this review, the effects of EMR on wild pollinator groups such as wild bees, hoverflies, bee flies, beetles, butterflies, and wasps etc. have been highlighted. Researchers are also recommended for further study on the effects of EMR on insects. This study will be significant to conserve pollinators and other important insects.
Article Details
Article Details
Anthropogenic, Electromagnetic, Pollinator, Radiations, Risk
Aguero, J.I., Pérez-Mendez, N., Torretta, J.P. and Garibaldi, L.A. (2020). Impact of invasive bees on plant-pollinator interactions and reproductive success of plant species in mixed Nothofagus Antarctica forests. Neotrop Entomol., Aug; 49 (4):557-567. https://doi.org/10.1007/s13744-020-00787-6.
Aguilar, R., Ashworth, L., Galetto, L. and Aizen, M. (2006). Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol. Lett., 9:968–980. DOI: 10.1111/j.1461-0248.2006.00927.x.
Ashman, T.L., Knight, T.M., Steets, J.A., Amarasekare, P., Burd, M., Campbell, D.R., Dudash, M.R., Johnston, M.O., Mazer, S.J., Mitchell, R.J., Morgan, M.T. and Wilson, W.G. (2004). Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology, 85:2408-2421. http://dx.doi.org/10.1890/03-8024.
Atli, E, U¨ nlu¨ H. (2006). The effects of microwave frequency electromagnetic fields on the development of Drosophila melanogaster. Int. J. Radiat. Biol., 82:435–441.
Atli, E, U¨ nlu¨ H. (2007). The effects of microwave frequency electromagnetic fields on the fecundity of Drosophila melanogaster. Turkish J. Biol., 31:1–5.
Bae, J.E., Bang, S., Min, S., Lee, S.H., Kwon, S.H., Lee, Y. (2016). Positive geotactic behaviors induced by geomagnetic field in Drosophila. Mol. Brain., 9(1)55. https://doi.org/10.1186/s13041-016-0235-1.
Balmori, A. (2015). Anthropogenic radiofrequency electromagnetic fields as an emerging threat to wildlife orientation. Sci. Total Environ., 518–519:58–60. DOI: 10.1016/j.scitotenv.2015.02.077.
Bandara, P. and Carpenter, D.O. (2018). Planetary electromagnetic pollution: it is time to assess its impact.2(12):E512-E514. DOI:https://doi.org/10.1016/S2542-5196(18)30221-3.
Bhatia, R., Gupta, D., Chandel, J. S. and Sharma, N. K. (1995). Relative abundance of insect visitors on flowers of major subtropical fruits in Himachal Pradesh and their effect on fruit set. Indian Jour. Agric. Sci., 65: 907-912.
Biesmeijer, J.C., Roberts, S.P.M., Reemer, M., Ohlemuller, R., Edwards, M., Peeters, T., Schaffers, A.P., Potts, S.G., Kleukers, R., Thomas, C.D., Settele, J. and Kunin, W.E. (2006). Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science, 313:351–354. DOI: 10.1126/science.1127863.
Bin Zikria, Y., Kim, S.W., Afzal, M.K., Wang, H.X. and Rehmani, M.H. (2018). 5G Mobile services and scenarios: challenges and solutions. Sustainability, 10. https://doi.org/10.3390/su10103626.
Brown, M.J.F., Dicks, L.V., Paxton, R.J., Baldock, K.C.R., Barron, A.B., Chauzat, M, Freitas, B.M., Goulson, D., Jepsen, S., Kremen, C., Li, J., Neumann, P., Pattemore, D.E., Potts, S.G., Schweiger, O., Seymour, C.L., Stout, J.C. (2016). A horizon scan of future threats and opportunities for pollinators and pollination. PeerJ, 4:e2249 https://doi.org/10.7717/peerj.2249.
Burda, H., Begall, S., Cerveny, J., Neef, J. and Nemec, P. (2009). Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. Proc. Natl. Acad. Sci. U. S. A. 106, 5708–5713. doi: 10.1073/pnas.0811 194106.
Burkle, L.A., Marlin, J.C. and Knight, T.M. (2013). Plant-pollinator interactions over 120 years: loss of species, co-occurrence and function. Science, 339:1611–1615. doi: 10.1126/science.1232728.
Cammaerts, M.C., De Doncker, P., Patris, X., Bellens, F., Rachidi, Z. and Cammaerts, D. (2012). GSM 900 MHz radiation inhibits ants’ association between food sites and encountered cues. Electromagn. Biol. Med., 31:151–165. doi: 10.3109/15368378.2011.624661.
Cammaerts, M. C. and Johansson, O. (2014). Ants can be used as bioindicators to reveal biological effects of electromagnetic waves from some wireless apparatus. Electromagn. Biol. Med. 33:282–288. doi: 10.3109/15368 378.2013.817336.
Cammaerts, M.C., Vandenbosch, G.A.E. and Volski, V. (2014). Effect of short-term GSM radiation at representative levels in society on a biological model: the ant Myrmica sabuleti. J. Insect. Behav. 27:514–526. DOI: 10.1007/s10905-014-9446-4.
Chavdoula, E.D., Panagopoulus, D.J., Margaritis, L.H. (2010). Comparison of biological effects between continuous and intermittent exposure to GSM-900-MHz mobile phone radiation: detection of apoptotic cell-death features. Mutat. Res. 700:51–61.
Chiawo, D. O., Ogol, C. K. P. O., Kioko, E. N., Otiende, V. A. and Gikungu, M. W. (2017). Bee diversity and floral resources along a disturbance gradient in Kaya Muhaka forest and surrounding farmlands of coastal Kenya. Jour. Poll. Ecol., 20, 51–59. http://dx.doi.org/10.26786/1920-7603%282017%29five.
Clarke, D., Whitney, H., Sutton, G. and Robert, D. (2013). Detection and learning of floral electric fields by bumblebees. Science, 340, 66–69. doi: 10.1126/science.123 0883.
Cucurachi, S., Tamis, W.L.M., Vijver, M.G., Peijnenburg, W.J.G.M., Bolte, J.F.B. and de Snoo, G.R. (2013). A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environ. Int. 51:116–140. DOI: 10.1016/j.envint.2012.10.009.
Dag, A. and Gazet, S. (2000). Mango pollinators in Israel. Jour. Applied Horticulture, Lucknow. 2 (1): 39-43.
De Santis, A.A.A. and Chacoff, N.P.C. (2020). Urbanization affects composition but not richness of flower visitors in the Yungas of Argentina. Neotrop Entomol. https://doi.org/10.1007/s13744-020-00772-z.
Dimobe, K., Goetze, D., Ouédraogo, A., Forkuor, G., Wala, K., Porembski, S. and Thiombiano, A. (2017). Spatio-temporal dynamics in land use and habitat fragmentation within a protected area dedicated to tourism in a Sudanian savanna of West Africa. Jour. Landsc. Ecol., 10, 5–25. DOI: https://doi.org/10.1515/jlecol-2017-0011.
Driessen, S., Bodewein, L., Dechent, D., Graefrath, D., Schmiedchen, K., Stunder, D. (2020). Biological and health-related effects of weak static magnetic fields (? 1 mT) in humans and vertebrates: A systematic review. PLoS ONE 15(6): e0230038. https://doi.org/10.1371/journal.pone.0230038.
Egdogan, Y. and Cengiz, M.M. (2019). Effect of Electromagnetic Field (EMF) and Electric Field (EF) on Some Behavior of Honey Bees (Apis mellifera L.) 3rd International conference on Advance Ennering Technologies 19-21 September 2019 Bayburt/ TURKEY. https://doi.org/10.11 01/608182.
Engels, S., Schneider, N.L., Lefeldt, N., Hein, C.M., Zapka, M. and Michalik, A. (2014). Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature, 509, 353. doi: 10.1038/nature13290.
Evenhuis, N. L., Pape, T. Pontand, A. C. and Thompson, F. C. (2008). Biosystematic database of World Diptera, Version 10.http://www.diptera.org/biosys.htm, accessed on 20 January 2008.
Favre, D. (2011). Mobile phone-induced honeybee worker piping. Apidologie, 42, 270–279. DOI: 10.1007/s13592-011-0016-x.
Godfray, H.C.J., Blacquiere, T., Field, L.M., Hails, R.S., Petrokofsky, G. and Potts, S.G. (2014). A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. R. Soc. B. Biol. Sci. 281. doi: 10.1098/rspb.2014.0558.
Godfray, H.C.J., Blacquière, T., Field, L.M., Hails, R.S., Potts, S.G. and Raine, N.E. (2015). A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. R. Soc. Lond. B Biol. Sci. 282. https://doi.org/10.109 8/rspb.2015.1821.
Gonzalez-Varo, J.P., Biesmeijer, J.C., Bommarco, R., Potts, S.G., Schweiger, O. and Smith, H.G.(2013). Combined effects of global change pressures on animal-mediated pollination. Trends Ecol. Evol. 28, 524. doi: 10.1016/j.tree.2013.05.008.
Gould, J.L., Kirschvink, J.L. and Deffeyes, K.S. (1978). Bees have magnetic remanence. Science 201, 1026–1028. DOI: 10.1126/science.201.4360.1026.
Goulson, D., Lye, G.C. and Darvill, B. (2008). Decline and conservation of bumble bees. Annu. Rev. Entomol. 53:191–208. https://doi.org/10.1146/annurev.ento.53.1 03106.093454
Greenberg, B., Bindokas, V.P., Frazier, M.J. and Gauger, J.R. (1981). Response of honey bees, Apis mellifera L., to high-voltage transmission lines. Environ. Entomol. 10, 600–610. doi: 10.1093/ee/10.5.600.
Greggers, U., Koch, G., Schmidt, V., Durr, A., Floriou-Servou, A. and Piepenbrock, D. (2013). Reception and learning of electric fields in bees. Proc. R. Soc. B Biol. Sci. 280. http://dx.doi.org/10.1098/rspb.2013.0528.
Grubisic, M., van Grunsven, R.H.A., Kyba, C.C.M., Manfrin, A. and Holker, F. (2018). Insect declines and agroecosystems: does light pollution matter? Ann. Appl. Biol. 173, 180–189. https://doi.org/10.1111/aab.12440.
Halder, S., Ghosh, S., Khan, R., Khan, A., Perween, T. and Md. A Hasan (2019). Role of pollination in fruit crops: A review. The Pharma Innov. Jour. 8(5): 695-702.
Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N. and Schwan, H. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, e0185809. ttps://doi.o rg/10.1371/journal.pone.0185809
Harst, W., Kuhn, J. and Stever, H. (2006). Can electromagnetic exposure cause a change in behaviour? Studying possible non-thermal influences on honeybees—an approach within the framework of educational informatics. Acta Syst IIAS Int J 6(1):1–6.
Hegland, S.J., Nielsen, A., Lazaro, A., Bjerknes, A.L., Totland, Ø. (2009) How does climate warming affect plant–pollinator interactions? Ecol Lett 12:184–195. doi: 10.1111/j.1461-0248.2008.01269.x.
Hill, B. and Bartomeus, I.(2016). The potential of electricity transmission corridors in forested areas as bumblebee habitat. Open Science 3, 160525. https://doi.org/10.1098/rsos.160525.
Hsu, C. Y. and Li, C. W. (1994). Magnetoreception in honeybees. Science, 265, 95–97. doi: 10.1126/science.265.5168.95.
Hunicken, P.L., Morales, C.L., Garcia, N. and Garibaldi, L.A. (2020). Insect pollination, more than plant nutrition, determines yield quantity and quality in apple and pear. Neotropical Entomology 49(10). DOI: 10.1007/s13744-020-00763-0
IPBES (2016). In: Potts, S.G., Imperatriz-Fonseca, V.L., Ngo, H.T. (Eds.), The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany.
Kearns, C., Inouye, D. and Waser, N. (1998). Endangered mutualisms: the conservation of plant–pollinator interactions. Annu. Rev. Ecol. Syst., 29:83–112. https://doi.org/10.1146/annurev.ecolsys.29.1.83
Kirschvink, J.L. and Kirschvink, A.K. (1991). Is geomagnetic sensitivity real - replication of the Walker-Bitterman magnetic conditioning experiment in honey bees?. Am. Zool., 31, 169–185.
Kirschvink, J.L., Walker, M.M. and Diebel, C. (2001). Magnetite-based magnetoreception. Curr. Opin. Neurobiol., 11:462–467.
Klein, A.M., Vaissiere, B.E., Cane, J.H., Dewenter, I.S., Cunningham, S.A., Kremen, C. and Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. Lond. B. Biol. Sci., 274:303–313. https://doi.org/10.1098/rspb.2006.3721.
Knop, E., Zoller, L., Ryser, R., Erpe, C.G., Horler, M. and Fontaine, C. (2017). Artificial light at night as a new threat to pollination. Nature, 548, 206.
Kremen, C., Williams, N.M., Aizen, M.A., Gemmill-Herren, B., LeBuhn, G., Minckley, R., Packer, L., Potts, S.G., Roulston, T., Steffan-Dewenter, I., Vazquez, D.P., Winfree, R., Adams, L., Crone, E.E., Greenleaf, S.S., Keitt, T.H., Klein, A.M., Regetz, J. and Ricketts, T.H. (2007). Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol. Lett. 10:299–314.
Lambinet, V., Hayden, M.E., Reigl, K., Gomis, S. and Gries, G. (2017). Linking magnetite in the abdomen of honey bees to a magnetoreceptive function. Proc. R. Soc. B Biol. Sci., 284, 20162873. https://doi.org/10.1098/rspb.2016.2873.
Larson, B. M. H., Kevan, P. G. and Inouye, D. W. (2001). Flies and flowers: The taxonomic diversity of anthophiles and pollinators. Canadian Entomologist, 133(4): 439-465.
Lázaro, A., Chroni, A., Tscheulin, T., Devalez, J., Matsoukas, C. and Petanidou, T. (2016). Electromagnetic radiation of mobile telecommunication antennas affects the abundance and composition of wild pollinators. J. Insect Conserv., 20, 315–324.
Liang, C.H., Chuang, C.L., Jiang, J.A., Yang, E.C. (2016). Magnetic sensing through the abdomen of the honey bee. Sci. Rep., 6: 23657. doi: 10.1038/srep23657.
Macgregor, C.J., Evans, D.M., Fox, R. and Pocock, M.J.O. (2017). The dark side of street lighting: impacts on moths and evidence for the disruption of nocturnal pollen transport. Glob. Chang. Biol., 23: 697–707. https://doi.org/10.1111/gcb.13371.
Macgregor, C.J., Pocock, M.J.O., Fox, R. and Evans, D.M. (2015). Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review. Ecological Entomology, 40:187–198. DOI: 10.1111/een.12174.
Makinistian, L., Muehsam, D.J., Bersani, F. and Belyaev, I. (2018). Some recommendations for experimental work in magnetobiology, revisited. Bioelectromagnetics, 39, 556–564. doi: 10.1002/bem.22144.
Malkemper, E.P., Eder, S.H.K., Begall, S., Phillips, J.B., Winklhofer, M. and Hart, V. (2015). Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radiofrequency fields. Sci. Rep., 5: 9917. doi:10.1038/srep09917.
Malkemper, E. P., Tscheulin, T., Vanbergen, A. J., Vian, A., Balian, E. and Goudeseune, L. (2018). The impacts of artificial Electromagnetic Radiation on wildlife (flora and fauna). Current knowledge overview: a background document to the web conference. A report of the EKLIPSE project.
Marques, R.D., Lima, M.A.P., Marques, R.D. and Bernardes, R.C. (2020). A spinosadbased formulation reduces the survival and alters the behavior of the stingless bee Plebeia lucii. Neotrop Entomol., 49(4).https://doi.org/10.1007/ s13744-020-00766-x.
Odemer, R. and Odemer, F. (2019). Effects of radiofrequency electromagnetic radiation (RFEMF) on honey bee queen development and mating success. Sci. Total Environ., 661, 553–562. DOI: 10.1016/j.scitotenv.2019.01.154.
OECD (2012). Environmental Outlook to 2050: The Consequences of Inaction. p. 350.
Panagopoulos, D.J., Karabarbounis, A, Margaritis, L.H. (2004). Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of Drosophila melanogaster. Electromagn. Biol. Med., 23:29–43.
Panagopoulos, D.J., Chavdoula, E.D., Nezis, I.P. and Margaritis, L.H. (2007). Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation. Mutat. Res., 626:69–78.
Panagopoulos, D.J., Chavdoula, E.D. and Margaritis, L.H. (2010). Bioeffects of mobile telephony radiation in relation to its intensity or distance from the antenna. Int. J. Radiat. Biol., 86:345–357.
Pauw, A. (2007). Collapse of a pollination web in small conservation areas. Ecology, 88:1759 1769. https://www.jstor.org/stable/27651293.
Potts, S.G., Petanidou, T., Roberts, S., O.,Toole, C., Hulbert, A., Willmer, P. (2006). Plant-pollinator biodiversity and pollination services in a complex Mediterranean landscape. Biol. Conserv., 129:519–529. doi:10.1016/j.biocon.2005.11.019.
Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O. and Kunin, W.E. (2010). Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol., 25:345–353. doi: 10.1016/j.tree.2010.01.007.
Potts, S.G., Imperatriz-Fonseca, V., Ngo, H.T., Aizen, M.A., Biesmeijer, J.C. and Breeze, T.D. (2016). Safeguarding pollinators and their values to human well-being. Nature, 540: 220 229. doi: 10.1038/nature20588.
Russell, C.L. (2018). 5 G wireless telecommunications expansion: public health and environmental implications. Environ. Res., 165, 484–495. doi: 10.1016/j.envres.2018.01.016.
Sahib, S.S. (2011). Impact of mobile phones on the density of honeybees. J. Public Adm Policy Res. 3:131–137.
Sanchez-Bayo, F. and Wyckhuys, K.A.G. (2019). Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv., 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020.
Sawe, T., Nielsen, A. and Eldegard, K. (2020). Crop pollination in small-scale agriculture in Tanzania: Household Dependence, Awareness and Conservation, Sustainability 2020, 12, 2228; doi:10.3390/su12062228.
Sharma, V.P. and Kumar, N.R. (2010). Changes in honeybee behaviour and biology under the influence of cellphone radiations. Curr. Sci., 98:1376–1378.
Shepherd, S., Lima, M.A.P., Oliveira, E.E., Sharkh, S.M., Jackson, C.W. and Newland, P.L.(2018). Extremely low frequency electromagnetic fields impair the cognitive and motor abilities of honey bees. Sci. Rep., 8. 10.1038/s41598-018-26185-y.
Singh, G. (1988). Insect pollinators of mango and their role in fruit setting. Acta Hort., 231: 629-632.
Singh, G. (1997). Pollination, pollinators and fruit setting in mango. Acta Hort., 455: 116 123.
Stein, K., Stenchly, K., Coulibaly, D., Pauly, A., Dimobe, K., Steffan-Dewenter, I., Konate, S., Goetze, D., Porembski, S. and Linsenmair, K. E. (2018). Impact of human disturbance on bee pollinator communities in savanna and agricultural sites in Burkina Faso, West Africa. Ecology and Evolution. 2018;8:6827–6838.DOI: 10.1002/ece3.4197.
Sutherland, W.J., Butchart, S.H.M., Connor, B., Culshaw, C., Dicks, L.V. and Dinsdale, J. (2018). A 2018 horizon scan of emerging issues for global conservation and biological diversity. Trends Ecol. Evol., 33: 47–58. doi: 10.1016/j.tree.2017.11.006.
Sutton, G.P., Clarke, D., Morley, E.L. and Robert, D. (2016). Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields. Proc. Natl. Acad. Sci. U. S. A. 113: 7261–7265. doi: 10.1073/pnas.1601 62 4113.
Tangtorwongsakul, P., Warrit, N. and Gale, G. A. (2018). Effects of landscape cover and local habitat characteristics on visiting bees in tropical orchards. Agricul. and For.t Entomol., 20, 28–40. https://doi.org/10.1111/afe.12226.
Tomanova, K. and Vacha, M. (2016). The magnetic orientation of the Antarctic amphipod Gondogeneia antarctica is cancelled by very weak radiofrequency fields. J. Exp. Biol. 219, 1717–1724. doi: 10.1242/jeb.132878.
Tscheulin, T., Spyropoulos, A. and Petanidou, T. (2010). Impacts of mobile phone masts on the abundance of pollinators. In: 5th Conference of the Hellenic Ecological Society, Patras, p 201.
Vacha, M., Puzova, T. and Kv?calova, M. (2009). Radio-frequency magnetic fields disrupt magnetoreception in American cockroach. J. Exp Biol 212:3473–3477. doi: 10.1242/jeb.028670.
Valkova, T. and Vacha, M. (2012). How do honeybees use their magnetic compas? Can they see the North? Bull. Entomol. Res., 102:461–467. doi: 10.1017/S0007485311000824.
van Langevelde, F., van Grunsven, R.H.A., Veenendaal, E.M. and Fijen, T.P.M. (2017). Artificial night lighting inhibits feeding in moths. Biol. Lett., 13. doi: 10.1098/rsbl.2016.0874.
Vanbergen, A.J. (2013). Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Environ., 11, 251–259. https://doi.org/10.1890/120126.
Vijver, M.G., Bolte, J.F.B., Evans, T.R., Tamis, W.L.M., Peijnenburg, W.J.G.M., Musters, C.J.M. and de Snoo, G.R. (2013). Investigating short-term exposure to electromagnetic fields on reproductive capacity of invertebrates in the field situation. Electromagn. Biol. Med., 33(1):21–28.
Vijver, M.G., Bolte, J.F., Evans, T.R., Tamis,W.L., Peijnenburg,W.J. and Musters, C.J. (2014). Investigating short-term exposure to electromagnetic fields on reproductive capacity of invertebrates in the field situation. Electromagn, Biol. Med., 33, 21–28. https://doi.org/10.3109/15368378.2013.783846.
Wajnberg, E., Acosta-Avalos, D., Alves, O.C., de Oliviera, J.F., Srygley, R.B. and Esquivel, D.M. (2010). Magnetoreception in eusocial insects: an update. J. R. Soc. Interface 7:S207–S225. doi: 10.1098/rsif.2009.0526.focus.
Wan, G.J., Jiang, S.L., Zhao, Z.C., Xu, J.J., Tao, X.R. and Sword, G.A. (2014). Bio-effects of near-zero magnetic fields on the growth, development and reproduction of small brown planthopper, Laodelphax striatellus and brown planthopper, Nilaparvata lugens. J. Insect Physiol., 68, 7–15. DOI: 10.1016/j.jinsphys.2014.06.016.
Warnke, U. (2009). Bees, birds and mankind: destroying nature by ‘Electrosmog’ effects of wireless communication technologies. A Brochure series by the competence initiative for the protection of humanity, environment and democracy, Kempten, 1st edn, November 2007, ISBN: 978-3-00-023124-7, English edn, March 2009, pp 14–33.
Weisbrot, D., Lin, H., Ye, L., Blank, M. and Goodman, R. (2003). Effects of mobile phone radiation on reproduction and development in Drosophila melanogaster. J. Cell Biochem., 89:48–55.
Wyszkowska, J., Shepherd, S., Sharkh, S., Jackson, C.W. and Newland, P.L. (2016). Exposure to extremely low frequency electromagnetic fields alters the behaviour, physiology and stress protein levels of desert locusts. Sci. Rep. 6, 36413.
Zhang, Z.Y., Zhang, J., Yang, C.J., Lian, H.Y., Yu, H. and Huang, X.M. (2016). Coupling mechanism of electromagnetic field and thermal stress on Drosophila melanogaster. PLoS One, 11: e0162675.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)