A review on the role of emerging revolutionary nanotechnology in forensic investigations
Article Main
Abstract
Due to the unique properties of nanoparticles, it has gained prominence in lots of fields with extensive research being carried around it. With lots of novel applications arising from this field, Forensic science seems to be one of the fast-growing fields in nano research applications. The growing and extensive use of nanotechnology being applied in forensic investigations is promising and could soon be the tipping point in the discipline. Applications mainly have been related to evidence identification and analysis in the broad major fields in Forensic Science such as single-crystalline semiconductor CdS nano slabs for explosives detection, functionalized TiO2 nanorods for organophosphorus chemical warfare agents in Forensic Chemistry, the use of Nanopowders for latent print visualization in Forensic physics and Gold nanoparticle protein nanopore for detection of single-stranded DNA in Forensic biology. Nanotechnology has also been employed in illegal drug detection in recent times. These and other applications of Nanotechnology provides prompt and precise results with reduced methods due to the limited instruments used for analyzing evidence as well as providing sensitive and selective ways of detecting evidence. As evidence is notable in forensic investigations, nanotechnology’s use in identifying and detecting these has potential in enhancing and providing efficient and rapid means for investigations and unravelling leads into crimes. This review emphasizes some disciplines in forensic sciences in which nanotechnology is having an impact, novel methods and newly developed instruments and also takes into account its challenges as well as perspectives into the future.
Article Details
Article Details
Forensic science, Forensic evidence, Investigations, Nanotechnology, Nanoparticles
Aksoy, Ç., Bora, T., ?enocak, N., and Aydin, F. (2015). A new method to reduce false positives due to antimony in detection of gunshot residues. Forensic Science International, 250: 87–90. https://doi.org/10.1016/j.forsciint.20 15.03.006
Almeida, N. S. M., Dixini, P. V. M., Bassane, F. P., and França, H. S. (2016). Documentoscopy by atomic force microscopy ( AFM ) coupled with Raman microspectroscopy?: applications in banknote and driver license analyses. Analytical Methods, 8: 771-784 https://doi.org/10.1039/C5AY03 128A
American Academy of Forensic Sciences (2020).’ Types of Forensic Scientist: Disciplines of AAFS’ Retrieved September, 10 2020 from https://aafs.org/Home/Resources/Students/Types.aspx
Arshad, A., Farrukh, M. A., Ph, D., and Ali, S. (2015). Development of Latent Fingermarks on Various Surfaces Using ZnO-SiO2. The Journal of Forensic Sciences, 60(5): 1182–1187. https://doi.org/10.111 1/1556-4029.12890
Atta, Nada F, Galal, A., and Azab, S. M. (2011). Determination of morphine at gold nanoparticles / Nafion Ò carbon paste modified sensor electrode. Analyst.,136: 4682–4691. https://doi.org/10.1039/c1an15423k
Atta, Nada Farouk, Galal, A., El-ads, E. H., and Hassan, S. H. (2019). Cobalt Oxide Nanoparticles / Graphene / Ionic Liquid Crystal Modified Carbon Paste Electrochemical Sensor for Ultra-sensitive Determination of a Narcotic Drug. Tabriz University of Medical Sciences, 9(1): 110–121. https://doi.org/10.15171/apb.2019.014
Biapo, U., Ghisol, A., Spitzer, D., and Cottineau, T. (2019). Functionalized TiO 2 Nanorods on a Microcantilever for the Detection of Organophosphorus Chemical Agents in Air. Appl. Mater. Interfaces., 11(38): 35122–35131. https://doi.org/10.1 021/acsami.9b11504
Boojaria, A., Masrournia, M., and Ghorbani, H. (2015). Silane modified magnetic nanoparticles as a novel adsorbent for determination of morphine at trace levels in
human hair samples by high-performance liquid chromatography with diode array detection. Forensic Science, Medicine, and Pathology, 11(4):497-503 . https://doi.org/10.10 07/s12024-015-9702-8
Canetta, E., Montiel, K., and Adya, A. K. (2009). Morphological changes in textile fibres exposed to environmental stresses?: Atomic force microscopic examination.Forensic Science International., 191: 6–14. https://doi.org/10.1016/j.forsciint.2009.05.022
Cavalcanti, D. R., and Silva, L. P. (2019). Application of atomic force microscopy in the analysis of time since deposition ( TSD ) of red blood cells in bloodstains?: A forensic analysis. Forensic Science International, 301: 254–262. https://doi.org/10.1016/j.forsciint.2019.05.048
Chen, Y. F. (2011). Forensic applications of nanotechnology. Journal the Chinese Chemical Society, 58(6): 828–835. https://doi.org/10.1002/jccs.201190129
Chu, B., Lou, D., Yu, P., Hu, S., and Shen, S. (2011). Development of an on-column enrichment technique based on C 18 -functionalized magnetic silica nanoparticles for the determination of lidocaine in rat plasma by high performance liquid chromatography. Journal of Chromatography A, 1218(41): 7248–7253. https://doi.org/1 0.1016/j.chroma.2011.08.053
Clifford, C. A., Sano, N., Doyle, P., and Seah, M. P. (2012). Ultramicroscopy Nanomechanical measurements of hair as an example of micro-fibre analysis using atomic force microscopy nanoindentation. Ultramicroscopy, 114: 38–45. https://doi.org/10.1016/j.ultramic.2012.01.006
Dashtian, K., Kolaei, M., Rafiee, Z., and Ghaedi, M. (2016). Ultrasonic-assisted magnetic solid phase extraction of morphine in urine samples by new imprinted polymer-supported on MWCNT-Fe3O4-NPs: central composite design optimization. Ultrasonics - Sonochemistry., 33: 240-248 https://doi.org/10.1016/j.ultsonch.2016.05.003
Ding, Y., Li, X., Guo, Y., Duan, W., Ling, J., and Zha, L. (2017). Estimation of postmortem interval by vitreous potassium evaluation with a novel fluorescence aptasensor. Scientific Reports, April, 1–9. https://doi.org/10.1038/s41598-017-02027-1
Du, W., Zhang, B., Guo, P., Chen, G., Chang, C., and Fu, Q. (2018). Facile preparation of magnetic molecularly imprinted polymers for the selective extraction and determination of dexamethasone in skincare cosmetics using HPLC. J. Sep. Sci., 41(11): 2441-2452 . https://doi.org/1 0.1002/jssc.201701195
Dupres, V., Camesano, T., Langevin, D., and Checco, A. (2004). Atomic force microscopy imaging of hair?: correlations between surface potential and wetting at the nanometer scale. J. Colloid Interface Sci., 269: 329–335. https://doi.org/10.1016/j.jcis.2003.08.018
Ensafi, A. A., Rezaei, B., and Krimi-maleh, H. (2011). An ionic liquid-type multiwall carbon nanotubes paste electrode for electrochemical investigation and determination of morphine. Ionics., 17: 659–668. https://doi.org/10.10 07/s11581-011-0562-2
Fisher, J. B. A. (2004). Techniques of crime scene investigation (7th ed.). CRC Press.
Giannoukos, S., Brkic, B., Taylor, S., Marshall, A., and Verbeck, G. F. (2016). Chemical Sni ffi ng Instrumentation for Security Applications. Chem. Rev., 116(14): 8146–8172 https://doi.org/10.1021/acs.chemrev.6b00065
Gopi, S., Amalraj, A., Haponiuk, J. T., and Thomas, S. (2016). Introduction of Nanotechnology in Herbal Drugs and Nutraceutical?: A Review. Journal of Nanomedicine & Biotherapeutic Discovery 6(2): 1–8. https://doi.org/10.417 2/2155-983X.1000143
Goudsmits, E., Sharples, G. P., and Birkett, J. W. (2015). Recent trends in organic gunshot residue analysis. TrAC - Trends in Analytical Chemistry, 74: 46–57. https://doi.org/10.1016/j.trac.2015.05.010
Iavicoli, I., Leso, V., Ricciardi, W., Hodson, L. L., and Hoover, M. D. (2014). Opportunities and challenges of nanotechnology in the green economy. Environmental Health, 13(1): 78. https://doi.org/10.1186/1476-069X-13-78
Jing Wu, Mingling Dong, Cheng Zhang, Yu Wang, Mengxia Xie, and Y. C. (2017). Magnetic Lateral Flow Strip for the Detection of Cocaine in Urine by Naked Eyes and Smart. Sensors. 17(6): 1286. https://doi.org/10.3390/s17061286
Kasas, S., Khanmy-vital, A., and Dietler, G. (2001). Examination of line crossings by atomic force microscopy. Forensic Science International, 119: 290–298.
Kaushik, M., Mahendru, S., Chaudhary, S., and Kukreti, S. (2017). DNA Fingerprints?: Advances in their Forensic Analysis Using. Journal of Forensic Biomechanics., 8(1): 8–11. https://doi.org/10.4172/2090-2697.1000131
Khan, I., Saeed, K., and Khan, I. (2017). Nanoparticles?: Properties , applications and toxicities. Arabian Journal of Chemistry., 12(7): 908-931. https://doi.org/10.1016/j.arab jc.2017.05.011
Kim, B. J., Han, C., Moon, H., Kwon, J., Jang, I., Lim, S., Park, K., Choi, J., and An, H. J. (2018). Monitoring of post-mortem changes of saliva N-glycosylation by nano LC / MS. Analytical and Bioanalytical Chemistry, 410:45–56.
Kwak, J., Kim, H. K., Kim, K., Noh, B. R., and Cheon, H. I. (2016). Proteomic Evaluation of Biomarkers to Determine the Postmortem Interval Proteomic Evaluation of Biomarkers to Determine the Postmortem Interval. Analytical Letters., 50: 207-218. https://doi.org/10.1080/00032 719.2016.1172080
Lad, A. N., Pandya, A., and Agrawal, Y. K. (2016). Overview of nano-enabled screening of drug-facilitated crime: A promising tool in forensic investigation. In TrAC - Trends in Analytical Chemistry, 80: 458-470. Elsevier B.V. https://doi.org/10.1016/j.trac.2015.07.016
Lee, H. C., Palmbach, T. M., and Miller, M. T. (2004). Henry Lee’s crime scene handbook. Elsevier Academic press.
Lee, H. C. (2013). Forensic Evidence and Crime Scene Investigation. Journal of Forensic Investigation., 1(2): 1–5.
Li, L., Liu, D., Wang, K., Mao, H., and You, T. (2017). Sensors and Actuators B?: Chemical Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor. Sensors and Actuators: B. Chemical, 252: 17–23. https://doi.org/10.1016/j.snb.2017.05.155
Liao, L., Xing, Y., Xiong, X., Gan, L., Hu, L., Zhao, F., and Tong, Y. (2020). An electrochemical biosensor for hypoxanthine detection in vitreous humor?: A potential tool for estimating the post-mortem interval in forensic cases. Microchemical Journal, 155: 104760. https://doi.org/10.10 16/j.microc.2020.104760
Lingxin, S. (2016). As featured in?: Molecular imprinting?: perspectives and applications. Chemical Society Reviews, 45: 2137–2211. https://doi.org/10.1039/C6CS00061D
Liu, C., Wu, S., Yan, Y., Dong, Y., Shen, X., and Huang, C. (2019). Application of magnetic particles in forensic science. Trends in Analytical Chemistry, 121: 115674. https://doi.org/10.1016/j.trac.2019.115674
Ma, R., Ota, S., Li, Y., Yang, S., and Zhang, X. (2014). Explosives detection in a lasing plasmon nanocavity. Nature Nanotechnology, 9(8): 600–604. https://doi.org/10.1038/nnano.2014.135
Mansha, M., Qurashi, A., Bakare, F. O., Khan, I., and Yamani, H. (2016). Synthesis of In2O3/graphene heterostructure and their hydrogen gas sensing properties.
Ceramics International., 12(9):11490-11495 https://doi.or g/10.1016/j.ceramint.2016.04.035
Mar, B., Garc, C., Pii, R., Braz, A., and Garc, C. (2015). Raman imaging for determining the sequence of blue pen ink crossings. Forensic Science International.,249: 92-100. https://doi.org/10.1016/j.forsciint.2015.01.023
McCord, B. (2006). Nanotechnology and its potential in forensic DNA analysis. Nanotechnology, 7–9.
Mcewen, T. (2010). ‘The Role and Impact of Forensic Evidence in the Criminal Justice System, Final Report’.
Washington, DC: U. S. National Institute of Justice. Retrieved August, 21 2020 from https://www.ncjrs.gov/pdffiles1/nij/grants/236474.pdf
Mereuta, L., Asandei, A., Dragomir, I. S., Bucataru, I. C., Park, J., Seo, C. H., Park, Y., and Luchian, T. (2020a). Sequence specific detection of single stranded DNA with a gold nanoparticle protein nanopore approach. Scientific Reports, 1–12. https://doi.org/10.1038/s41598-020-68258-x
Mereuta, L., Asandei, A., Dragomir, I. S., Bucataru, I. C., Park, J., Seo, C. H., Park, Y., and Luchian, T. (2020b). Sequence _ specific detection of single _ stranded DNA with a gold nanoparticle _ protein nanopore approach. Scientific Reports, 1–12. https://doi.org/10.1038/s41598-020-68258-x
Mokhtari, A., Karimi-maleh, H., Ensafi, A. A., and Beitollahi, H. (2012). Application of modified multiwall carbon nanotubes paste electrode for simultaneous voltammetric determination of morphine and diclofenac in biological and pharmaceutical samples. Sensors and Actuators: B. Chemical, 169: 96–105. https://doi.org/10.1016/j.snb.2012.03.059
Muro, C. K., and Lednev, I. K. (2016). Identification of individual red blood cells by Raman microspectroscopy for forensic purposes?: in search of a limit of detection. Analytical and Bioanalytical Chemistry., 409: 287-293. https://doi.org/10.1007/s00216-016-0002-2
Nanowerk (2013). ‘Nanotechnology sensors for the detection of trace explosive' Retreived on September, 13 2020 from https://www.nanowerk.com/spotlight/spotid=28691.p hp
Navaee, A., Salimi, A., and Teymourian, H. (2012). Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine , morphine and noscapine. Biosensors and Bioelectronics, 31(1), 205–211. https://doi.org/10.1016/j.bios.2011.10.018
Lodha, A. S., Pandya, A., and Shukla, R. K. (2016). Nanotechnology?: An Applied and Robust Approach for Forensic Investigation. Forensic Res. Criminol. Int J ., 2(1):35-37 https://doi.org/10.15406/frcij.2016.02.00044
Pandya, A., and Shukla, R. K. (2018). New perspective of nanotechnology: role in preventive forensic. Egyptian Journal of Forensic Sciences, 8(1):58 https://doi.org/10.1186/s41935-018-0088-0
Lodha, A. S., Pandya, A., Sutariya, P. G. and Menon, S.K. (2013). Melamine modified gold nanoprobe for on-spot colorimetric recognition of clonazepam from biological specimens. June. https://doi.org/10.1039/c3an00184a
Prasad, V., Lukose, S., Agarwal, P., and Prasad, L. (2020a). Role of Nanomaterials for Forensic Investigation and Latent Fingerprinting—A Review. Journal of Forensic Sciences, 65(1), 26–36. https://doi.org/10.1111/1556-4029.14172
Prasad, V., Lukose, S., Agarwal, P., and Prasad, L. (2020b). Role of Nanomaterials for Forensic Investigation and Latent Fingerprinting - A Review. Journal of Forensic Sciences 65(1), 26–36. https://doi.org/10.1111/1556-4029.14172
Promsuwan, K., Kanatharana, P., Thavarungkul, P., and Limbut, W. (2019). Nitrite amperometric sensor for gunshot residue screening. Electrochimica Acta, 135309. https://doi.org/10.1016/j.electacta.2019.135309
Ranville, J. F. (2018). Gunshot residue ( GSR ) analysis by single particle inductively coupled plasma mass spectrometry ( spICP-MS ). Forensic Science International, 288: e20–e25. https://doi.org/10.1016/j.forsciint.2018.0 5.010
Razmi, H., and Jabbari, M. (2015). Development of graphene-carbon nanotube- coated magnetic nanocomposite as an efficient sorbent for HPLC determination of organophosphorus pesticides in environmental water samples.International Journal of Environmental Analytical Chemistry,95(14): 1353-1369. https://doi.org/10.108 0/03 067319.2015.1090567
Rodrigues, L., Belém, A., Braz, A., and Fernanda, M. (2019). Raman hyperspectral imaging and a novel approach for objective determination of the order of crossing ink lines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 223: 117287. https://doi.org/10.1016/j.saa.2019.117287
Roushani, M., and Shahdost-fard, F. (2014). A highly selective and sensitive cocaine aptasensor based on covalent attachment of the aptamer-functionalized AuNPs onto nanocomposite as the support platform. Analytica Chimica Acta., 853: 214- 221.https://doi.org/10.1016/j.aca.2014.09.031
Gurden, S. P., Monteiro, V. F. and M. M. C. F. (2004). Quantitative analysis and classification of AFM images of human hair. Microscopy., 215(1):13–23.
Safari, J., and Zarnegar, Z. (2014). Advanced drug delivery systems?: Nanotechnology of health design A review. Journal of Saudi Chemical Society, 18(2): 85–99. https://doi.org/10.1016/j.jscs.2012.12.009
Saini, R., Saini, S., and Sharma, S. (2010). Nanotechnology?: The Future Medicine. J. Cutan Aesthet. Surg.,3(1): 32– 34. https://doi.org/10.4103/0974-2077.63301
Sazlinda Kamaruzaman, Mohd Marsin Sanagi, Noorfatimah Yahaya, W. A., and Ibrahim, Salasiah Endud, W. N. W. I. (2017). Magnetic micro-solid-phase extraction based on magnetite-MCM-41 with gas chromatography–mass spectrometry for the determination of antidepressant drugs in biological fluids. Journal of Separation Science, 40(21):4222-4233. https://doi.org/10.1002/jssc.201700549
Shaalan, M., Saleh, M., and El-mahdy, M. (2016). Recent progress in applications of nanoparticles in fish medicine?: A review. Nanomedicine: Nanotechnology, Biology, and Medicine, 12(3): 701–710. https://doi.org/10.1016/j.nano.2015.11.005
Shengran Cai, Wei Li, Pengcheng Xu, Xiaoyuan Xia, Haitao Yu, S. Z., and Li, and X. (2019). In-situ construction of metal–organic framework (MOF) UiO-66 film on Parylene-patterned resonant microcantilever for trace organophosphorus molecules detection. Analyst.,144: 3729-3735. https://doi.org/10.1039/C8AN02508H
Sivakumar, A. S., Krishnaraj, C., and Sheet, S. (2017). Interaction of silver and gold nanoparticles in mammalian cancer?: as real topical bullet for wound healing — A comparative study. In Vitro Cell Dev Biol Anim., 53(7):632-645. https://doi.org/10.1007/s11626-017-0150-5
Smijs, T., Galli, F., and Asten, A. Van. (2016). Forensic potential of atomic force microscopy. Forensic Chemistry, 2: 93–104. https://doi.org/10.1016/j.forc.2016.10.005
Srividya, B. (2016). Research and Reviews?: Journal of Pharmaceutics and Nanotechnology Nanotechnology in Forensics and Its Application in Forensic Investigation Research and Reviews?: Journal of Pharmaceutics and Nanotechnology. 4(2): 1–7.
Street, D. P., Mah, A. H., Ledford, W. K., Patterson, S., Bergman, J. A., Lokitz, B. S., Pickel, D. L., Messman, J. M., Stein, G. E., and Ii, S. M. K. (2020). Tailoring Interfacial Interactions via Polymer-Grafted Nanoparticles Improves Performance of Parts Created by 3D Printing. ACS Appl. Polym. Mater., 2(3): 1312–1324. https://doi.org/10.1 021/acsapm.9b01195
Taghvimi, A., Hamishehkar, H., and Ebrahimi, M. (2016). The application of magnetic nano graphene oxide in determination of methamphetamine by high performance liquid chromatography of urine samples. Journal of the Iranian Chemical Society., 13(8): 1471-1480. https://doi.org/10.10 07/s13738-016-0862-6
Thayer, E., Turner, W., Blama, S., Devadas, M. S., and Hondrogiannis, E. M. (2019). Signal detection limit of a portable Raman spectrometer for the SERS detection of gunshot residue. MRS Communications., 9(3): 948-955. https://doi.org/10.1557/mrc.2019.10 0
Threes Smijs and Federica Galli. (2018). Forensic Potential Potential of of Atomic Atomic Force Force Microscopy Microscopy with with Special Focus on Age Age Determination Determination of of Bloodstains In: Atomic-force Microscopy and its Applications. April 2018 . https://doi.org/10.5772/intechopen.77204
Tiede, K., Boxall, A. B. A., Tear, S. P., Lewis, J., David, H., and Hassellöv, M. (2008). Detection and characterization of engineered nanoparticles in food and the environment. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 25(7):795–821. https://doi.org/10.1080/02652030802007553
Wirken, L., Po, E., Sijen, T., Knijff, P. De, Liu, F., Branicki, W., Kayser, M., and Walsh, S. (2018). The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: Introduction and forensic developmental validation. Forensic Science International: Genetics., 35:123-135. https://doi.org/10.1016/j.fsigen.2018.04.004
Yang, J., Yang, H., Liu, S., and Mao, L. (2015). Microwave-assisted synthesis graphite-supported Pd nanoparticles for detection of nitrite. Sensors and Actuators: B. Chemical, 220: 652–658. https://doi.org/10.1016/j.snb.2 015.05.118
Zhang, Suling; Yao, Weixuan; Fu, Defeng; Zhang, Chunxiao; Zhao, H. (2018). Fabrication of magnetic zinc adeninate metal–organic frameworks for the extraction of benzodiazepines from urine and wastewater. Journal of Separation Science, 41(8): 1711–1896. https://doi.or g/10.1002/jssc.201701226
Zhang, J., Ma, J., Zhang, S., Wang, W. and Chen, Z.(2015). A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles decorated carbon spheres. Sensors and Actuators: B. Chemical., 211:385-391. https://doi.org/10.1016/j.snb.2015.01.100
Zhao, R., Jia, D., Wen, Y., and Yu, X. (2016). Cantilever-based aptasensor for trace level detection of nerve agent simulant in aqueous matrices. Sensors and Actuators: B. Chemical. 231: 1231– 1239. https://doi.org/10.1016/j.sn b.2016.09.089
Zhou, Y., Zhou, T., Jin, H., Jing, T., Song, B., Zhou, Y., Mei, S., and Lee, Y. (2015). Rapid and selective extraction of multiple macrolide antibiotics in foodstuff samples based on magnetic molecularly imprinted polymers. Talanta., 137: 1-10 https://doi.org/10.1016/j.talanta.2015.01.0 08
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)