Article Main

V. Prabhu K. Poonkodi K. Pradeep S. Buvaneswari R. Mini K. Vimaladevi M. Anusuya Sibi G

Abstract

Susceptibility of Malassezia furfur to certain medium chain fatty acids shed light onto novel strategies to control dandruff. This study explored antidandruff activity of the fatty acids and other bioactive compounds from flowers of Cassia auriculata and Cassia alata. The idea was supplementing the growth medium with fatty acids which are inhibitory to Malassezia so that plant-based antidandruff formulations could be developed based on the results. Chloroform and ethanolic flower extracts were tested there in vitro efficacy against M. furfur and the potential antidandruff compounds were identified by gas chromatography-mass spectrophotometry (GC-MS). Minimum inhibitory concentrations were determined for both the extracts and IC50 values of 50 and 88 µM for chloroform extract of C. auriculata and C. alata were recorded. For ethanol extract, IC50 values of 75 and 70 µM were exhibited by C. auriculata and C. alata, respectively. Inhibition of M. furfur through fatty acids from Cassia is the first report, and it is possible to include specific fatty acids in the growth media to inhibit the growth of Malassezia which could be later served as lead molecules in antidandruff formulations. Further, the presence of citronellol, pinitol, anthracenedione and chrysine in Cassia flower extracts and their antidandruff activity reported in this study needed further research on those compounds to formulate effective treatment of Malassezia associated diseases.

Article Details

Article Details

Keywords

Anti-dandruff, Cassia alata, Cassia auriculata, Fatty acids, Malassezia furfur

References
Ashbee, H. R., Evans, E. G. V. (2002). Immunology of diseases associated with Malassezia species. Clin Microbiol Rev., 15: 21-57. doi: 10.1128/CMR.15.1.21-57.2002
Atarzadeh, F., Kamalinejad, M., Dastgheib, L., Amin, G., Jaladat, A.M. and, Nimrouzi, M. (2017). Cassia fistula: A remedy from Traditional Persian Medicine for treatment of cutaneous lesions of Pemphigus vulgaris. Avicenna J Phytomed., 7: 107–115. PMCID PMC5355816
Bhattacharyya, A., Jain, N., Prasad, S., Jain, S., Yadav V., Ghosh S., Sengupta, S. (2017). Evaluation of therapeutic potential of VB-001, a leave-on formulation, for the treatment of moderate adherent dandruff. BMC Dermatol., 17: 5. doi: 10.1186/s12895-017-0058-5
Cerdeiras MP, Fernandez J, Soubes M, Vero S, Ferreira F, Moyna P, Olano I, Vazquez A (2000). A new antibacterial compound from Ibicella lutea. J Ethnopharmacol., 73: 521-525. doi: 10.1016/S0378-8741(00)00339-1
Damodaran, S., Venkataraman, S. (1994). A study on the therapeutic efficacy of Cassia alata, Linn. leaf extract against Pityriasis versicolor. J Ethnopharmacol., 42: 19–23. doi: 10.1016/0378-8741(94)90018-3
Dilika, F., Bremner, P.D. and, Meyer, J.J.M. (2000). Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: a plant used during circumcision rites. Fitoterapia., 71: 450–452. doi: 10.1016/s0367-326x(00)00150-7
Duke, J.A. Handbook of Medicinal Herbs. 2nd edition. Florida, Fla, USA: CRC Press; 2002.
Findley, K., Oh, J., Yang, J., Conlan, S., Deming, C., Meyer, J. A., Schoenfeld, D., Nomicos, E., Park, M., Kong, H.H. and Segre, J.A. (2013). Topographic diversity of fungal and bacterial communities in human skin. Nature., 498: 367-370. doi: 10.1038/nature12171
Gemmer, C.M., Y.M. DeAngelis, Y.M., B. Theelen, B., T. Boekhout, T. and T.L. Dawson Jr, J.L. (2002). Fast, non-invasive method for molecular detection and differentiation of Malassezia yeast species on human skin and application of the method to dandruff microbiology. J Clin Microbiol., 40: 3350-3357. doi: 10.1128/jcm.40.9.3350-3357.2002
Gorecka, A.K., Gorecki, M., Rzepecka-Stojko, A., Balweerz, R. and, Stojko. J. (2020). Bee products in dermatology and skin care. Molecules. 25: 556. doi: 10.3390/molecules25030556
Gupta, A.K., Batra, R., Bluhm. R., Boekhout, T. and, Dawson, T.L. (2004). Skin diseases associated with Malassezia species. J. Am. Acad. Dermatol., 51: 785–798. doi: 10.1016/j.jaad.2003.12.034
He, X., Du, X., Zang, X., Dong, L., Gu, Z., Cao, L., Chen D., Keyhani NO., Yao, L., Qiu, J. and, Guan, X. (2015). Extraction, identification and antimicrobial activity of a new furanone, grifolaone A, from Grifola frondosa. Natural Product Research., 30: 941–947. doi: 10.108 0/14786419.2015.1081197
Kavitha, K., Sekar. P., Pirabhakaran, R. and Mukhopadhyay, T. (2016). Incidence of M. japonica in moderate dandruff condition in south India and its sensitivity against tea tree oil, geraniol, citronellol and ketoconazole. International Journal of Recent Scientific Research., 7: 9383-9386.
Khare, C.P. (2007). Indian Medicinal Plants: An Illustrated Dictionary. Berlin, Germany: Springer.
Kubo, I., Muroi, H. and, Kuo, A. (1993). Antibacterial activity of long-chain alcohols against Streptococcus mutans. J. Agric. Food Chem., 41: 2447–2450. doi: 10.1021/jf00036a045
Kumar, P.P., Kumaravel, S. and, Lalitha, C. (2010). Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. Afr. J. Biochem., 4: 191–195. doi: 10.5897/AJBR.9000213
Kumar, P.S., Sucheta, S., Deepa, V.S., P. Selvamani, Latha, S. (2008). Evaluation of antidandruff activity using polyherbal oil from six medicinal plants. Journal of Biotechnology., 136: S408–S409. doi: 10.9790/264X-0501010106
Lee, J.Y., Kim, Y.S. and, Shin, D.H. (2002). Antimicrobial synergistic effect of linolenic acid and monoglyceride against Bacillus cereus and Staphylococcus aureus. J Agric Food Chem., 50: 2193–2199. doi: 10.1021/jf011175a
Maity, T.K., Mandal, S.C, Bhakta, T., Pal, M. and, Saha, B.P. (2001). Metabolism of 1,8-dihydroxy 3-hydroxy methyl anthraquinone (aloe-emodin) isolated from the leaves of Cassia tora in albino rats. Phytother Res., 15: 459-460. doi: 10.1002/ptr.975
Martindale, W. (1989). The Extra Pharmacopoeia. 28th ed. Pharmaceutical Press; London, UK: pp. 1637–1638.
Mayser, P. (2015). Medium chain fatty acid ethyl esters - activation of antimicrobial effects by Malassezia enzymes. Mycoses., 58: 215–219. doi: 10.1111/myc.12300
Mayser, P., Haze, P., Papavassilis, C., Pickel, M., Gruender, K. and, Gueho, E. (1997). Differentiation of Malassezia species: selectivity of cremophor EL, castor oil and ricinoleic acid for M. furfur. Br J Dermatol., 37: 208-213. doi: 10.1046/j.1365-2133.1997.18071890.x.
McGraw, L.J., Jager, A.K. and, van Staden, J. (2002). Antibacterial effects of fatty acids and related compounds from plants. South African Journal of Botany., 68: 417-423. doi: 10.1016/S0254-6299(15)30367-7
Mukherjee, K., Tribedi, P, Mukhopadhyay, B. and, Sil, A.K. (2013). Antibacterial activity of long-chain fatty alcohols against mycobacteria. FEMS Microbiol. Lett., 338: 177-183. doi: 10.1111/1574-6968.12043
Murugan, T., Wins, J. A. and, Murugan, M. (2013). Antimicrobial activity and phytochemical constituents of leaf extracts of Cassia auriculata. Ind J Pharm Sci, 75: 122–125. doi: 10.4103/0250-474X.113546
Papavassilis, C., Mach, K.K. and, Mayser, P.A. (1999). Medium-chain triglycerides inhibit growth of Malassezia: implications for prevention of systemic infection. Crit. Care Med., 27: 1781–1786. doi: 10.1097/00003246-199909000-00013
Pereira, F.O., Mendes, J.M., Lima, I.O., Mota, K.S., Oliveira, W.A., Oliveira, W.A. and, Lim, E.O. (2014). Antifungal activity of geraniol and citronellol, two monoterpenes alcohols, against Trichophyton rubrum involves inhibition of ergosterol biosynthesis. Pharm Biol., 53: 228-234. doi: 10.3109/13880209.2014.913299
Prabhu, V., Manjula, V., Santhiya, K., Tamileela Kanali, G.P., Saravanakumar, P. and Sibi, G. (2020). Chemometric profile of Calotropis gigantea and its antioxidant activity through bioactive compounds from latex, leaves and flower extracts. Asian Journal of Chemistry., 32: 2865-2872. doi:10.14233/ajchem.2020.22875
Rahuman, A.A., Gopalakrishnan, G., Ghouse, B.S., Arumugam, S. and Himalayan, B. (2000). Effect of Feronia limonia on mosquito larvae. Fitoterapia., 71: 553–555. doi: 10.1016/s0367-326x(00)00164-7
Rathore, S.S., Isravel, M., Vellaisamy, S., Chellappan, DR., Raman, T. and Ramakrishnan, J. (2017). Exploration of antifungal and immunomodulatory potentials of a furanone derivative to rescue disseminated Cryptococcosis in mice. Sci Rep., 7: 15400. doi: 10.1038/s41598-017-15500-8
Romagnoli, C., Baldisserotto, A., Vicentini, C.B., Mares, D., Andreotti, E., Vertuani, S. and Manfredini, S. (2016). Antidermatophytic action of resorcinol derivatives: ultrastructural evidence of the activity of phenylethyl resorcinol against Microsporum gypseum. Molecules., 21: 1306. doi: 10.3390/molecules21101306
Sampaio, A.L.S.B., Mameri, A.C.A.C.A, Vargas, T.J.D.S., Ramos-eSilva M., Nunes, A.P and, Carneiro, S.C.S.D.S. (2011). Seborrheic dermatitis. An. Bras. Dermatol., 86: 1061–1074. doi: 10.1590/s0365-05962011000600002
Sharafutdinov, I.S., Pavlova, A.S., Akhatova, F. S., Khabibrakhmanova, A.M., Rozhina, E.V., Romanova, Y.J., Fakhrullin, R., Lodochnikova, O.A., Kurbangalieva, A. R., Bogachev, M.I. and, Kayumov, A.R. (2019). Unraveling the molecular mechanism of selective antimicrobial activity of 2(5h)-furanone derivative against Staphylococcus aureus. Int J Mol Sci., 20: 694. doi: 10.3390/ijms20030694
Sharma, S., and Sibi, G. (2017). Epidemiology and characterization of lipophilic yeast (Malassezia) from human dandruff samples using cultural and molecular methods. International Research Journal of Biochemistry and Biotechnology. 4: 68-74.
Shin S. and Lim, S. (2004). Antifungal effects of herbal essential oils alone and in combination with ketoconazole against Trichophyton spp. J Appl Microbiol., 97: 1289-1296. doi: 10.1111/j.1365-2672.2004.02417.x
Sibi, G., Alam, M.A., Shah, J. and Razak, M. (2014). Susceptibility pattern of Malassezia species to selected plant extracts and antifungal agents. International Journal of Green Pharmacy., 8: 226-230. doi: 10.4103/0973-8258.142675
Singhal, M., Kansara, N. (2012). Cassia tora Linn cream inhibits ultraviolet-B-induced psoriasis in rats. ISRN dermatology., 346510. doi: 10.5402/2012/346510
Sugita, T., Boekhout, T., Velegraki, A., Guillot, J., Hadina, S. and Cabanes, F.J. (2010). Epidemiology of Malassezia-related skin diseases. T. Boekhout, E. Gueho, P. Mayser, A. Velegraki (Eds.,), Malassezia and the skin, Springer Verlag. pp. 65-119. doi: 10.1007/978-3-642-036 16-3_3
Takemoto, A., Cho, O., Morohoshi, Y., Sugita, T. and, Muto, M. (2015). Molecular characterization of the skin fungal microbiome in patients with psoriasis. J Dermatol., 42: 166-170. doi: 10.1111/1346-8138.12739
Timothy, S.Y., Wazis, C.H., Adati, R.G. and Maspalma, I.D. (2012). Antifungal activity of aqueous and ethanolic leaf extracts of Cassia alata Linn. Journal of Applied Pharmaceutical Science., 2: 182-185. doi: 10.7324/JAPS.2012.2728
Togashi, N., Shiraishi, A., Nishizaka, M., Matsuoka, K., Endo, K., Hamashima., H and Inoue, Y. (2007). Antibacterial activity of long-chain fatty alcohols against  Staphylococcus aureus.  Molecules., 12: 139-148. doi: 10.3390/12 020139
Section
Research Articles

How to Cite

Antidandruff activity of Cassia auriculata and Cassia alata through fatty acids mediated inhibition of Malassezia furfur. (2020). Journal of Applied and Natural Science, 12(4), 532-540. https://doi.org/10.31018/jans.v12i4.2390