##plugins.themes.bootstrap3.article.main##

Ashok Aggarwal Nisha Kadian Karishma Karishma Neetu Neetu Anju Tanwar K.K Gupta

Abstract

Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies) and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different plant developmental stages. In the past two decades,
biotechnology research has provided considerable insights into the mechanism of biotic stress tolerance in plants at the molecular level. Furthermore, different abiotic stress factors may provoke osmotic stress, oxidative stress and protein denaturation in plants, which lead to similar cellular adaptive responses such as accumulation of compatible solutes, induction of stress proteins, and acceleration of reactive oxygen species scavenging systems. Recently, various methods are adapted to improve plant tolerance to salinity injury through either chemical treatments (plant hormones, minerals, amino acids, quaternary ammonium compounds, polyamines and vitamins) or biofertilizers treatments (Asymbiotic nitrogen-fixing bacteria, symbiotic nitrogen-fixing bacteria) or enhanced a process used naturally by plants (mycorrhiza) to minimise the movement of Na+ to the shoot. Proper management of Arbuscular Mycorrhizal Fungi (AMF) has the potential to improve the profitability and sustainability of salt tolerance. In this review article, the discussion is restricted to the mycorrhizal symbiosis and alleviation of salinity stress.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Arbuscular mycorrhizal fungi, Growth improvement, Nutrient uptake, Salinity stress

References
Aggarwal, A., Kadian, N., Tanwar, A., Yadav, A. and Gupta, K.K. (2011). Role of arbuscular mycorrhizal fungi (AMF) in global sustainable development. Journal of Applied and Natural Sciences, 3(2): 340-351.
Al-Garni, S.M.S. (2006). Increasing NaCl-salt tolerance of a halophytic plant Phragmites australis by mycorrhizal symbiosis. American-Eurasian Journal of Agricultural and Environmental Science, 1: 119-126.
Alguacil, M.M., Hernandez, J.A., Caravaca, F., Portillo, B. and Roldan, A. (2003). Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiol Plant, 118: 562-570.
Al-Karaki, G.N. (2006). Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulturae, 109: 1-7.
Al-Karaki, G.N. (2000). Growth and mineral acquisition by mycorrhizal tomato grown under salt stress. Mycorriza, 10: 51-54.
Al-Karaki, G.N. and Clark, R.B. (1998). Growth, mineral acquisition and water use by mycorrhizal wheat grown under water stress. Journal of Plant Nutrition, 21: 263–276.
Al-Karaki, G.N., Hammad, R. and Rusan, M. (2001). Response of two tomato cultivars differing in salt tplerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza, 11:43-47.
Allen, E.B. and Cunningham, G.L. (1983). Effects of vesiculararbuscular mycorrhizae on Distichlis spicata under three salinity levels. New Phytologist., 93: 227-236.
Aliasgharzadeh, N., Saleh Rastin, N., Towfighi, H. and Alizadeh, A. (2001). Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza, 11:119-122.
Araus, J.L., Ferrio, J.P., Buxó, R. and Voltas, J. (2007). The historical perspective of dry land agriculture: lessons learned from 10 000 years of wheat cultivation. Journal of Experimental Botany, 58: 131-145.
Ashraf, M. and Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59: 207–216.
Ashraf, M. and Harris, P.J.C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166: 3-16.
Ashwani, K., Satyawati, S.H. and Saroj, M. (2010). Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation and mycorrhizal dependency of Jatropha curcas L. Journal of Plant Growth Regulation, 29: 297-306.
Audet, P. and Charest, C. (2006). Effects of AM colonization on “wild tobacco” plants grown in zinc-contaminated soil. Mycorrhiza, 16: 277-283.
Audet, P. and Charest, C. (2008). Allocation plasticity and plant-metal partitioning: Meta-analytical perspectives in phytoremediation. Environmental Pollution, 156: 290-296.
Audet, P. and Charest, C. (2009). Contribution of AM symbiosis to in vitro root metal uptake: From trace to toxic metal conditions. Botany, 87: 913-921 - Special Issue.
Augé, R.M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science, 84: 373-381.
Blaha, G., Stelzl, U., Spahn, C.M.T., Aggrawal, R.K., Frank, J. and Nierhaus, K.H. (2000) Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods in Enzymology, 317: 292-309.
Bolanos, L., Martin, M., El-Hamdaoui, A., Rivilla, R. and Bonilla, I. (2006). Nitrogenase inhibition in nodules from pea plants grown under salt stress occurs at the physiological level and can be alleviated by B and Ca. Plant Soil, 280: 135-142.
Brundrett, M.C. (2002). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154: 275-304.
Cantrell, I.C. and Linderman, R.G. (2001). Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil, 233: 269-281.
Chen ,D.M., Ellul, S., Herdman, K. and Cairney, J.W.G. (2001). Influence of salinity on biomass production by Australian Pisolithus spp. Isolates. Mycorrhiza, 11: 231-236.
Carvalho, L.M., Caçador, I. and Martins-Louçao, M.A. (2001). Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal). Mycorrhiza, 11: 303-309.
Colla, G., Rouphael, Y., Cardarelli, M., Tullio, M., Rivera, C.M. and Rea, E. (2008). Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils, 44: 501-509.
Copeman, R.H., Martin, C.A. and Stutz, J.C. (1996). Tomato growth in response to salinity and mycorrhizal fungi from saline or nonsaline soils. Hort Sci., 31: 341-344.
Dixon, R.K., Rao, M.V. and Garg, V.K. (1993). Salt stress affects in vitro growth and in situ symbioses of ectomycorrhizal fungi. Mycorrhiza, 3: 63-68.
Dixon, R.K. (1988). Response of ectomycorrrhizal Quercus rubra to soil cadmium, nickel and lead. Soil Biol Biochem., 20: 555-559.
Dudhane, M., Borde, M. and Jite, P.K. (2010). AM fungi influences the photosynthetic activity, growth and antioxidant enzymes in Allium sativum L. under salinity condition. Not. Sci. Biol., 2(4): 64-71.
Duke, E.R., Johnson, C.R. and Koch, K.E. (1986). Accumulation of phosphorus, dry matter and betaine during NaCl stress of split-root citrus seedlings colonized with vesicular-arbuscular mycorrhizal fungi on zero, one or two halves. New Phytologist., 104: 583–590.
El-Desouky, S.A. and Atawia, A.A.R. (1998). Growth perfomance of citrus rootstocks under saline conditions. Alexandria Journal of Agricultural Research, 43: 231–254.
Evelin, H., Kapoor, R. and Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Annals of Botany, 104: 1263-1280.
Feng, G., Zhang, F.S., Li, X.L., Tian, C.Y., Tang, C. and Rengel, Z. (2002). Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 12: 185-190.
Flowers, T.J.(2004). Improving crop salt tolerance. Journal of Experimental Botany, 55: 307-319.
Garg, N. and Manchanda, G. (2008). Effect of arbuscular mycorrhizal inoculation of salt-induced nodule senescence in Cajanus cajan (pigeonpea). Journal of Plant Growth Regulators, 27: 115–124.
Ghorbanli, M., Ebrahimzadeh, H. and Sharifi, M. (2004). Effect of NaCl and mycorrhizal fungi on antioxidative enzymes in soybean. Biol Plant, 48: 575-581.
Giri, B., Kapoor, R. and Mukerji, K.G. (2003). Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biology and Fertility of Soils, 38: 170-175.
Giri, B. and Mukerji, K.G. (2004). Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: Evidence for reduced sodium and improved magnesium uptake. Mycorrhiza, 14:307-312
Gorham, J. (1995). Betaines in higher plants-biosynthesis and role in stress metabolism. In: R.M.Wallgrove (Ed.) Amino acids and their derivatives in higher plants (pp 171-203) Cambridge University Press.
Grattan, S.R. and Grieve, C.M. (1998). Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78: 127-157.
Grattan, S.R. and Grieve, C.M. (1985). Betaine status in wheat in relation to nitrogen stress and to transient salinity stress. Plant and Soil, 85: 3–9.
Greenland, D.J. (1984). Exploited plants: rice. Biologist., 31: 291-325.
Goas, G., Goas, M. and Larher, F. (1982). Accumulation of free proline and glycine betaine in Aster tripolium subjected to a saline shock: a kinetic study related to light period. Physiologia Plantarum, 55: 383-388.
Harley, J. L. and Smith, S. (1983). Mycorrhizal Symbiosis. Academic Press, New York, pp 483.
Hasegawa, P.M., Bressan, R.A., Zhu, J. and Bohnert, H.J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology, 51: 463-499.
Harisnaut, P., Poonsopa, D., Roengmongkol, K. and Charoensataporn R. (2003). Salinity effects on antioxidant enzymes in mulberry cultivar. Science Asia, 29: 109-113.
Hatimi, A. (1999). Effect of salinity on the association between root symbionts and Acacia cyanophylla Lind.: growth and nutrition. Plant Soil, 216: 93-101.
Hepper, C.M. (1984). Regulation of spore germination of the vesicular-arbuscular mycorrhizal fungus Acaulospora laevis by pH. Trans. Brit. Mycol. Soc., 83: 154-156.
Hildebrand, U., Janetta, K., Ouziad, F., Renne, B., Nawrath, K. and Bothe, H. (2001). Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza, 10: 175-183.
Hirrel, M.C. and Gerdemann, J.W. (1980). Improved growth of onion and bell pepper in saline soils by two vesiculararbuscular mycorrhizal fungi. Soil Sci Soc Am J., 44: 654-655.
Hodges, D.M., Hamilton, R.I. and Charest, C. (1995). A chilling response test for early growth phase in maize. Canadian Journal of Plant Science. 74: 687–691.
Hoekstra, F.A., Golovina, E.A. and Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in Plant Sciences, 6: 431–438.
Hu, Y. and Schmidhalter, U. (2002). Limitation of salt stress to plant growth. In: B.Hock and C.F. Elstner (Ed.), Plant
toxicology (pp 91-224), Marcel Dekker Inc., New York.
Huey, R.B., Carlson, M., Crozier, L., Frazier, M., Hamilton, H., Harley, C., Hoang, A. and Kingsolver, J.G. (2002). Plants versus animals: Do they deal with stress in different ways? Integrative and Comparative Biology, 42: 415-423.
Hurkman, W.J., Fornari, C.S. and Tanaka, C.K. (1989). A comparison of the effect of salt on polypeptides and translatable mRNAs in roots of a salt-tolerant and a saltsenestive cultivar of Barley.Plant Physiol., 90: 1444-1456.
Irigoyen, J.J., Emerich, D.W. and Sanchez-Diaz, M. (1992). Water stress induced changes in concentration of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant, 84: 55-60.
Jahromi, F., Aroca, R., Porcel, R. and Ruiz-Lozano, J.M. (2008). Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecology, 55:45-53.
Jain, M., Mathur, G., Koul, S. and Sarin, N.B. (2001). Ameliorative effects of prolineon salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Reports, 20: 463–468.
Jain, R.K., Paliwal, K., Dixon, R.K. and Gjerstad, D.H. (1989). Improving productivity of multipurpose trees on substandard soils in India. J For., 87: 38-42.
Jarstfer, A.G., Farmer-Koppenol, P. and Sylvia, D.M. (1998). Tissue magnesium and calcium affect arbuscular mycorrhiza development and fungal reproduction. Mycorrhiza, 7: 237-242.
Jiang, M. and Zhang, J. (2002). Water stress-induced abscissic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize-leaves. Journal of Experimental Botany, 53: 2401–2410.
Johansson, J.F., Paul, L.R. and Finlay, R.D. (2004). Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol., 48:1-13.
Juniper, S. and Abbott, L. (1993). Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza, 4: 45-58.
Juniper, S. and Abbott, L.K. (2006). Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza, 16: 371-379.
Kaya, C., Ashraf, M., Sonmez, O., Aydemir, S., Tuna, A.L. and Cullu, M.A. (2009). The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Scientia Horticulturae, 121: 1–6.
Khan, A.G. (1974). The occurrence of mycorrhizas in halophytes, hydrophytes and xerophytes, and of endogone spores in adjacent soils. Journal of General Microbiology, 81:7-14.
Khare, V. and Rai, P. (2012). Microbial Diversity and Functions: Taxonomic Diversity of AM Fungi in Alkaline soils of upper Gangetic plains of Allahabad. In: D.J. Bagyaraj, K.V.B.R. Tilak, H.K.Kehri (Ed.), Microbial Diversity and Functions (pp 537-557), New Delhi: New India Publishing Agency.
Kumar, A., Sharma, S. and Mishra, S. (2010). Influence of arbuscular mycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation, and mycorrhizal dependency of Jatropha curcas L. Journal of Plant Growth Regulation, 29:297-306.
Landwehr, M., Hildebrand, U., Wilde, P., Nawrath, K., Tóth, T., Biro, B.and Bothe, H. (2002).The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza, 12: 199-211.
Maggio, A., Raimondi, G., Martino, A. and De Pascale, S. (2007). Salt stress response in tomato beyond the salinity tolerance threshold. Environmental and Experimental Botany, 59: 276-282.
Manchanda, G. and Garg, N. (2011). Alleviation of salt-induced ionic, osmotic and oxidative stresses in Cajanus Cajan nodules by AM inoculation. Plant Biosystems, 145(1): 88-97.
Marschner, H. and Dell, B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant and Soil 159: 89-102.
Marschner, H. (1986). Mineral Nutrition in Higher Plants. Academic Press, London, 674 pages.
Mason, E. (1928). Note on the presence of mycorrhiza in the roots of salt marsh plants. New Phytologist, 27: 193-195.
Mehdy, M.C. (1994). Active oxygen species in plant defense against pathogens. Plant Physiol., 105: 467-472.
Muhsin, T.M. and Zwiazek, J.J. (2002). Colonization with Hebeloma crustiliniforme increases water conductance and limits shoot sodium uptake in white spruce (Picea glauca) seedlings. Plant Soil, 238: 217-225.
Murkute, A.A., Sharma, S. and Singh, S.K. (2006). Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Horticulture Science, 33: 70-76.
Nunez, M., Mazzafera, P., Mazorra, L.M., Siquera, W.J. and Zullo, M.A.T. ( 2003). Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biologia Plantarum, 47: 67–70.
Ojala, J.C., Jarrell, W.M., Menge, J.A. and Johnson, E.L.V. (1983). Influence of mycorrhizal fungi on the mineral nutrition and yield of onion in saline soil. Agronomy Journal, 75: 255-259.
Parida, A., Das, A.B. and Das, P. (2002). NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a tree mangrove, Bruguiera parviflora, in hydroponic cultures. Journal of Plant Biology, 45: 28–36.
Peng, J., Li, Y., Shi, P., Chen, X., Lin, H. and Zhao, B. (2010). The differential behavior of arbuscular mycorrhizal fungi in interaction with Astragalus sinicus L. under salt stress. Mycorrhiza, 21:27-33.
Parida, S.K. and Das, A.B. (2005). Salt tolerance and salinity effects on plants. Ecotoxicology and Environment Safety, 60: 324–349.
Park, Y., Kim, S.H., Matalon, S., Wang, N.L. and Franses, E.I. (2009). Effect of phosphate salts concentrations, supporting electrolytes, and calcium phosphate salt precipitation on the pH of phosphate buffer solutions. Fluid Phase Equilibria, 278: 76-84.
Pedersen, A.L., Feldner, H.C. and Rosendahl, L. (1996). Effect of proline on nitrogenase activity in symbiosomes from root nodules of soybean (Glycine max L.) subjected to drought stress. J.Exp.Bot., 47: 1533-1539.
Pfeiffer, C.M. and Bloss, H.E. (1988). Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization. New Phytol., 108: 315-321.
Pond, E.C., Menge, J.A. and Jarrell, W.M. (1984). Improved growth of tomato in salinized soil by vesicular arbuscular mycorrhizal fungi collected from saline soils. Mycologia, 76: 74-84.
Porras-Soriano, A., Soriano-Martín, M.L., Porras-Piedra, A. and Azcón, R. (2009). Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. Journal of Plant Physiology, 166: 1350-1359.
Psarras, G., Bertaki, M. and Chartzoulakis, K. (2008). Response of greenhouse tomato to salt stress and K+ supplement. Journal of Plant Biosystems, 142: 149-153.
Rabie, G.H. and Almadini, A.M.(2005). Role of bioinoculants in development to salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol., 4: 210-222.
Reddell ,P., Foster, R.C. and Bowen, G.D. (1986). The effects of sodium chloride on growth and nitrogen fixation in Casuarina obesa Miq. New Phytol., 102: 397-408.
Rengasamy, P. (2006). World salinization with emphasis on Australia. J Exp Bot 57(5): 1017-1023.
Rengasamy, P., Chittleborough, D. and Helyar, K. (2003). Root zone constraints and plant-based solutions for dryland salinity. Plant Soil, 257: 249-260.
Ritchie, J.T., Kissel, D.E. and Burnett, E. (1972). Water movement in undisturbed swelling clay soil. Soil Science Society of America, 36: 874-879.
Rosendahl, C.N. and Rosendahl, S. (1991). Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber (Cucumis sativus L.) to salt stress. Environ Exp Bot., 31: 313-318.
Rozema, J., Arp, W., Diggelen, J. van., Esbroek, M. van., Broekman, R. and Punte, H. (1986). Occurrence and ecological significance of vesicular-arbuscular mycorrhiza in the salt marsh environment. Acta Bot Neerl., 35: 457-467.
Ruiz-Lozano, J.M. and Azcón, R. (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza, 10: 137-143.
Ruiz-Lozano, J.M., Azcón, R. and Gómez, M. (1996). Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant, 98: 767-722.
Rus, A., Yokoi, S., Sharkhuu, A., Reddy, M., Lee, B., Matsumoto, T.K., Koiwa, H., Zhu, J., Bressan, RA. and Hasegawa, P.M. (2001). At HKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proceedings of the National Academy of Sciences (USA) 98: 14150-14155.
Sannazzaro, A.I., Echeverria, M., Alberto,´ E.O., Ruiz, O.A. and Menendez, A.B. (2007). Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiology and Biochemistry, 45: 39–46.
Schilfgaarde, J. (1994). Irrigation - a blessing or a curse. Agricultural Water Management, 25:203-219.
Schluter, D. (2001). Ecology and the origin of species. Trends in Ecology and Evolution 16: 372-380.
Serraj, R., Vasquez-Diaz, H., Hernandez ,G. and Drevon, J.J.(2001). Genotypic difference in the short-term response of nitrogenase activity (C2H2 reduction) to salinity and oxygen in the common bean. Agronomie, 21: 645-651.
Sharifi, M., Ghorbanli, M. and Ebrahimzadeh, H. (2007). Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. Journal of Plant Physiology, 164:1144-1151.
Sheng, M., Tang, M., Chen, H., Yang, B., Zhang, F. and Huang, Y. (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18: 287-296.
Shekoofeh, E. and Sepideh, H. (2011). Effect of mycorrhizal fungi on some physiological characteristics of salt stressed Ocimum basilicum L. Iraninan Journal of Plant Physiology, 1(4): 215-222.
Shokri, S. and Maadi, B. (2009). Effects of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. Journal of Agronomy, 8:79-83
Singh, K.N. and Chatrath, R. (2001). Salinity Tolerance In: M.P. Reynolds, J.I.O.Monasterio, A. McNab (Ed.). Application of physiology in wheat breeding (pp 101-110), CIMMYT, Mexico.
Smith, S.E. and Read, D.J. (1997). Mycorrhizal Symbiosis. Academic Press, New York.
Stewart, C.R. and Lee, J.A. (1974). The rate of proline accumulation in halophytes. Planta, 120: 279–289.
Subramanian, K.S. and Charest, C. (1998). Arbuscular mycorrhizae and nitrogen assimilation in maize after drought and recovery. Physiologia Plantarum, 102: 285-296.
Subramanian, K.S. and Charest, C. (1999). Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza, 9: 69-75.
Sylvia, D.M. and William, S.E. (1992). Vesicular-arbuscular mycorrhizae in sustainable agriculture. In: American Society of Agronomy, (Eds.) G.J.Bethlenfalvag and R.G.Linderman, Madison: 101-124.
Tejera, N.A.,Campos, R., Sanjuán, J. and Lluch, C.(2005). Effect of sodium chloride on growth, nutrient accumulation, and nitrogen fixation of common bean plants in symbiosis with isogenic strains. J. Plant Nutr., 28: 1907-1921.
Tain, C.Y., Feng, G., Li, X.L. and Zhang, F.S. (2004). Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline on salinity tolerance of plants. Applied Soil Ecology, 26: 143–148.
Trappe, J.M. (1987). Phylogenetic and ecologic aspects of mycotrophy in the angiosperms from an evolutionary standpoint. In: Ecophysiology of VA Mycorrhizal plants, (Ed.) G.R. Safir, CRCPress, BOCA Raton, FL:5-25.
Tsang, A. and Maun, M.A. (1999). Mycorrhizal fungi increase salt tolerance of Strophostyles helvola in coastal foredunes. Plant Ecol., 144: 159-166.
Udvardi, M.K. and Day, D.A. (1997). Metabolite transport across symbiotic membranes of legume nodules. Annu Rev Plant Physiol Plant Mol Biol.,48: 493-523.
Wang, B., Xie, Z., Chen, J., Jiang, J. and Su, Q. (2008). Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L.) in a mining tailing contaminated soil. Journal of Environmental Sciences, 20: 1109-1117.
Wang, G.M., Stribley, D.P., Tinker, P.B. and Walker, C. (1985). Soil pH and vesicular-arbuscular mycorrhizas. In: Ecological Interactions in Soil: Plants, Microbes and Animals, (Ed.) A.H.Filter, Blackwell, Oxford: 219-224.
Williams, W.D. (1999). Salinisation: A major threat to water resources in the arid and semi-arid regions of the world. Lakes and Reservoirs, Research and Management 4: 85-91.
Yamato, M., Ikeda, S. and Iwase, K. (2008). Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza, 18:241-249.
Zhang, H. and Blumwald, E. (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology, 19: 765-768.
Zhu, J. (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6: 441-445.
Zhu, X.C., Song, F.B. and Xu, H.W. (2010). Arbuscular mycorrhizae improves low temp stress in maize via alterations in host water status and photosynthesis. Plant and Soil, 331: 129-137.
Qiang-Sheng, Wu and Ying-Ning, Zou. (2011). Arbuscular mycorrhizal symbiosis improves growth and root nutrient status of citrus subjected to salt stress. Science Asia, 35: 388-391.
Zuccarini, P. (2007). Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant, Soil and Environment, 53:283-289.
Zuccarini, P. and Okurowska, P. (2008). Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. Journal of Plant Nutrition, 31: 497–513.
Section
Research Articles

How to Cite

Arbuscular mycorrhizal symbiosis and alleviation of salinity stress. (2012). Journal of Applied and Natural Science, 4(1), 144-155. https://doi.org/10.31018/jans.v4i1.239