Beneficial effect of Hordeum vulgare extract against aluminum chloride induced neurotoxicity in Wistar rats
Article Main
Abstract
Aluminum is present in medicines and food. Its toxicity induces deleterious effects in various living organisms. At the same time, Hordeum vulgare a cereal known as an important nutritional source and also endowed with bioactive molecules. The objective of this study was to evaluate, on the one hand, the modifications induced by aluminum chloride in Wistar rats at the cerebral level and, on the other hand, to test the efficacy of the barley extract, Hordeum vulgare, (HEV) to restore the harmful effects of this studied metal with a concentration of 13 ml HEV/kg/day for a period of 21 days. The extraction of HEV by maceration resulted in an aqueous extract with a yield of 10.70%. Exposure to AlCl3 at a concentration of 100mg/kg, permitted to observe that the concentration of aluminium at the brain level is significantly high (p<0.05) in the intoxicated rats compared to the control rats. On the other hand, the activity of alkaline phosphatase (PAL), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) indicated a decrease in the intoxicated rats. Indeed, the histological study showed very pronounced lesions in the brains of the poisoned rats resulting in necrosis and cellular spongiosis. In addition, the administration of HEV restored the activity of the various antioxidant enzymes with an improvement in brain tissue architecture in intoxicated rats treated with HEV which justifies the therapeutic virtues of H. vulgare in protecting against aluminium chloride-induced neurotoxicity.
Article Details
Article Details
Aqueous Extract , Antioxidant status, AlCl3, Hordeum vulgare, Brain
Abdel-Wahab, W.M. (2012). AlCl3-induced toxicity and oxidative stress in liver of male rats: protection by melatonin. Life Sci J 9(4):1173–1182. http://www.lifes ciencesite.com
Abu-Serie, M. M., Habashy, N. H., & Maher, A. M. (2019). In vitro anti-nephrotoxic potential of Ammi visnaga, Petroselinum crispum, Hordeum vulgare, and Cymbopogon schoenanthus seed or leaf extracts by suppressing the necrotic mediators, oxidative stress and inflammation. BMC Complementary and Mlternative medicine 19(1): 149.
Adli, D., Hachem, K., Benreguieg, M., Brahmi, M., KAHLOULA, K., Slimani, M. (2018). The efficiency of Syzygium aromaticum essential oil against renal intoxication by lead in rats during development. Bioscience Research 15(3): 2126-2133.
AFSSAPS:Agence française de sécurité sanitaire des produits de santé (2011). Assessment of the risk associated with the use of aluminum in cosmetic products. Saint-Denis. Rapp.
Akalin Çiftçi, G., Ertorun, I., Akalin, A., Alata?, I.O., Musmul, A. (2015). The effects ofatorvastatin on antioxidant/anti in?ammatory properties of HDLs in hypercholesterolemics. Turk. J. Med. Sci. 45 (2): 345–351. doi: 10.3906/sag-1311-91
Al-dalain, S., El-kutry, M. S., and Ibrahim, H. S. (2008). Inhibitory effect of aqueous extracts of barley and fenugreek on ulcer induction in rats. World Appl Sci J 5(3): 332-9.
Al-Kahtani, M.A. (2010). Renal damage mediated by oxidative stress in mice treated with aluminum chloride: Protective effect of Taurine. J. Biol. Sci. 10(7):584-595.
Al-Olayan, E. M., El-Khadragy, M. F. and Abdel Moneim, A. E. (2015). The protective properties of melatonin against aluminium?induced neuronal injury. International journal of experimental pathology, 96(3): 196-202. doi: 10.1111/iep.12122
Andersson, A.A.M., Lampi, A.-M., Nyström, L. et al. (2008). Phytochemical and dietary ?ber components in barley varieties in the HEALTH GRAIN Diversity Screen. J. Agric. Food. Chem. 56 (21): 9767–9776. doi: 10.1021/jf802037f.
ATSDR-Agency for Toxic Substances and Disease Registry (1999). Toxicological Profile for Aluminum. Atlanta, GA.: U.S. Department of Health and Human Services, Public Health Service; 1999. Internet: http://www.atsdr.cdc.gov/toxprofiles/tp22.html
Bai, C.S., Wang, F., Zhao, H.S., Li, Y.F. (2012). Effects of Subchronic Aluminum Exposure on Liver Function in Rats. J. Northeast Agric. Univ. 19(2) :62-65. https://doi.org/10.1016/S1006-8104(13)60039-2
Bancroft, J.D. (1975). Histopathological stains and their diagnostic uses. Edinburgh London and New York: Churchill Livingstone.
Behall, K.M., D.J. Scholfield and J. Hallfrisch, (2004). Diets containing barley significantly reduce lipids in mildly hypercholesterolemic men and women. Am. J.Clin. Nutr, 80: 1185-93. doi: 10.1093/ajcn/80.5.1185.
Benedet, J.A., Umeda, H., Shibamoto, T. (2007) Antioxidant activity of flavonoids isolated from young green barley leaves toward biological lipid samples. J Agric Food Chem,55:5499-504. doi: 10.1021/jf070543t.
Bhadauria M. (2012) Combined treatment of HEDTA and propolis prevents aluminum induced toxicity in rats. Food Chem. Toxicol.50, 2487–2495. https://doi.org/10.1016/j.fct.2011.12.040
Chalansonnet, M., Carabin, N., Boucard, S., Merlen, L., Melczer, M., Antoine, G., Jerome, D., Aurelie, R., & Gagnaire, F. (2018). Study of potential transfer of aluminum to the brain via the olfactory pathway. Toxicology Letters, 283: 77-85. doi: 10.1016/j.toxlet.2017.11.027.
Cúneo, F., Amaya-Farfan, J., & Morgano, M. A. (2006). Dietary phytates protect the rat against lead toxicity—Journal of Food Agriculture and Environment, 4(3/4): 45.
Dago, À., González, I., Ariño, C., Díaz-Cruz, J. M., & Esteban, M. (2014). Chemometrics applied to the analysis of induced phytochelatins in Hordeum vulgare plants stressed with various toxic non-essential metals and metalloids. Talanta. 118: 201-209. doi: 10.1016/j.talanta.2013.09.058.
Daley, T., Omoregie, S. N., Wright, V. and Omoruyi, F. O. (2013). Effects of phytic acid and exercise on some serum analytes in rats orally exposed to diets supplemented with cadmium. Biological Trace Element Research, 151(3): 400-405. doi: 10.1007/s12011-012-9572-9.
Dehghan, K. A., Rasooli, I., Rezaee, M.B., Owlia, P. (2011). Antioxidative properties and toxicity of white rose extract. Iranian J Toxicol, 5(12):415–425.
Domingo, J.L., Llorens, J., Sanchez, D.J., Gomez, M., Llobet, J.M., Corbella, J.(1996). Age-related effects of aluminum ingestion on brain aluminum accumulation and behavior in rats. Life Sc.i, 58(17):1387–1395. doi: 10.1016/0024-3205(96)00108-7.
Esparza, J.L., Gomez, M., Rosa, N. M., Paternain, J.L., Mallol, J., Domingo, J.L. (2005).Melatonin reduces oxidative stress and increases gene expression in the cerebral cortex and cerebellum of aluminum-exposed rats. J Pineal Res, 39(2):129–136. doi: 10.1111/j.1600-079X.2005.00225.x.
Ferry, S., Matsuda, M., Yoshida, H., & Hirata, M. (2002). Inositol hexakisphosphate blocks tumor cell growth by activating apoptotic machinery as well as by inhibiting the Akt/NF?Bmediated cell survival pathway. Carcinogenesis, 23(12): 2031-2041.
Fonta, C., Negyessy, L., Renaud, L., et al. (2005). Postnatal development of alkaline phosphatase activity correlates with the maturation of neurotransmission in the cerebral cortex. J Comp Neurol,486:179–96. doi: 10.1002/cne.20524.
Food and Drug Administration (FDA). (2002). Food labeling: health claims, soluble dietary fiber from certain foods and coronary heart disease, Intl. Rule. Fed. Reg., 67: 61773-61783.
Giacalone, M., Di Sacco, F., Traupe, I., Topini, R., Forfori, F., Giunta, F. (2011). Antioxidant and neuroprotective properties of blueberry polyphenols: A critical review. Nutr Neurosci,14:119-25. doi: 10.1179/1476830511Y.0000000007.
Jan, A.T., Azam, M., Siddiqui, K., Ali, A., Choi, I., Haq, Q.M. (2015). Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci, 16(12): 29592–29630. doi: 10.3390/ijms161226183.
Jollow, D.J., Mitchell, J.R., Zampaglione, N., et al. (1973). Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology, 11:151–69. https://doi.org/10.1159/0 001 36 485
Kakkar, P., Das, B., Viswanathan, P.N. (1984). A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys, 21:130–2. http://hdl.handle.net/123456789/19932
Kalaiselvi, A., Suganthy, O.M., Govindassamy, P., Vasantharaja, D.,Gowri, B., Ramalingam, V. (2014). Influence of aluminium chloride on antioxidant system in the testis and epididymis of rats. Iranian J Toxicol., 8(24):991–997.
Kamiyama, M., Shibamoto, T. (2012). Flavonoids with potent antioxidant activity found in young green barley leaves. J Agric Food Chem, 60:6260-7. doi: 10.1021/jf301700j.
Kaur, T., Bijarnia, R.K., Nehru, B.(2009). Effect of concurrent chronic exposure of fluoride and aluminum on rat brain. Drug Chem Toxicol, 32(3):215–221. doi: 10.1080/01480540902862251.
Kumar, A., Dogra, S., & Prakash, A. (2009). Protective effect of curcumin (Curcuma longa), against aluminium toxicity: Possible behavioral and biochemical alterations in rats. Behavioural Brain Research, 205(2): 384-390. https://doi.org/10.1016/j.bbr.2009.07.012
Liaquat, L., Sadir, S., Batool, Z., Tabassum, S., Shahzad, S., Afzal, A., & Haider, S. (2019). Acute aluminum chloride toxicity revisited: Study on DNA damage and histopathological, biochemical and neurochemical alterations in rat brain. Life Sciences, 217: 202-211. https://doi.org/10.1016/j.lfs.2018.12.009
Mohamed, T. M., Salama, A. F., Nimr, T. M. E., & Gamal, D. M. E. (2015). Effects of phytate on thyroid gland of rats intoxicated with cadmium. Toxicology and Industrial Health, 31(12): 1258-1268. doi: 10.1177/07482 3371 3485887.
Murtaugh, M.A., D.R. Jacobs and B. Jacob. (2003). Epidemiological support for the protection of whole grains against diabetes. J. Proc. Nut. Soc., 62: 143-9. doi: 10.1079/pns2002223.
Nehru, B., Anand, P.(2005). Oxidative damage following chronic aluminium exposure in adult and pup rat brains. J Trace Elem. Med. Biol.,19(2–3):203–208. doi: 10.1016/j.jtemb.2005.09.004.
Ohtake, H., Yuasa, H., Komura, C., Miyauchi, T., Hagiwara, Y., Kubota, K.( 1985). Studies on the constituents of green juice from young barley leaves. Antiulcer activity of fractions from barley juice. Yakugaku Zasshi,105:1046-51. doi: 10.1248/yakushi1947.105.11_1046.
Platt, B., Fiddler, G., Riedel, G., Henderson, Z.(2001). Aluminium toxicity in the rat brain: histochemical and immunocytochemical evidence. Brain Res. Bul.l, 55(2):257-67. doi: 10.1016/s0361-9230(01)00511-1.
Rebaya, A., Belghith, S. I., Baghdikian, B., Leddet, V. M., Mabrouki, F., Olivier, E., & Ayadi, M. T. (2014). Total phenolic, total flavonoid, tannin content, and antioxidant capacity of Halimium halimifolium (Cistaceae). Journal of Applied Pharmaceutical Science, 5(1): 52-57. DOI: 10.7324/JAPS.2015.50110
Reddy, G. R., & Zawia, N. H. (2000). Lead exposure alters Egr-1 DNA-binding in the neonatal rat brain. International Journal of Developmental Neuroscience, 18(8): 791-795. doi: 10.1016/s0736-5748(00)00048-4.
Rimbach, G., Walter, A., Most, E., & Pallauf, J. (1998). Effect of microbial phytase on zinc bioavailability and cadmium and lead accumulation in growing rats. Food and Chemical Toxicology, 36(1): 7-12. doi: 10.1016/s0278-6915(97)00117-8.
Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G., Hoekstra, W.G. (1973). Selenium Science, 179:588–90
Samet, J.M., Wages, P.A. (2018). Oxidative stress from environmental exposures. Curr Opin Toxicol, 7:60–66. https://doi.org/10.1016/j.cotox.2017.10.008
Sánchez-Iglesias, S., Méndez-Alvarez, E., Iglesias-González, J., Muñoz-Patiño, A., Sánchez-Sellero, I., Labandeira-García, J.L., Soto-Otero, R. (2009). Brain oxidative stress and selective behaviour of aluminium in specific areas of rat brain: potential effects in a 6-OHDA-induced model of Parkinson's disease. J Neurochem., 109(3):879–888. https://doi.org/10.1111/j.1471-4159.2009.06 019.x
Sanchez-Iglesias, S., Soto-Otero, R., Iglesias-Gonzalez, J., Barciela-Alonso, M.C., Bermejo-Barrera, P., Mendez-Alvarez, E.(2007). Analysis of brain regional distribution of aluminium in rats via oral and intraperitoneal administration. J Trace Elem Med Biol., 21(Suppl 1):31–34. https://doi.org/10.1016/j.jtemb.2007.09.010
Sanchis, P., & Adrover, M. (2017). Phytate: a pharmacological swiss army knife with potential against protein glycation. Current Trends in Biomedical Engineering & Biosciences, 5: 85-88
Sefidkon, F., Jalili, A., & Mirhaji, T. (2002). Essential oil composition of three Artemisia spp. from Iran. Flavour and Fragrance Journal, 17(2): 150-152.
Sharma, D., Sethi, P., Hussain, E., Singh, R.(2009). Curcumin counteracts the aluminium-induced ageing-related alterations in oxidative stress, Na+K + ATPase and protein kinase C in adult and old rat brain regions. Biogerontology, 10(4):489–502. https://doi.org/10.1007/s10522-008-9195-x
Shewry, P.R. (2014). Minor components of the barley grain: minerals, lipids, terpenoids, phenolics, and vitamins. In: Barley: Chemistry and Technology, 2e (ed. P.R.Shewry and S.E. Ullrich), 161–192. St Paul: AACCI.
Sinha, A.K. (1972). Colorimetric assay of catalase. Anal Biochem 47:389–94.
Sitayeb, T., & Belabbes, I. (2018). Landscape Change in the Steppe of Algeria South-West Using Remote Sensing. Annals of Valahia University of Targoviste, Geographical Series, 18(1), 41-52.DOI: 10.2478/avutgs-2018-0005
Somova, L.I., Khan, M.S.(1996). Aluminium intoxication in rats. II. Chronic toxicity: effects on aluminium balance, aluminium plasma and tissue levels and haematology. S Afr J Food Sci and Nutrition, 8(3):102-5.
Taus, N., Farraj, M., T?nase, S., Mironescu, A., Boicu, M., Necula, V., Taus, L. (2013). Aluminum - a chemical neurotoxic agent. Bulletin of the Transilvania University of Bra?ov Series VI. Med. Sci, 2(55):1-8.
Thatiparthi, J., Dodoala, S., Koganti, B., & KVSRG, P. (2019). Barley grass juice (Hordeum vulgare L.) inhibits obesity and improves lipid profile in high-fat diet-induced rat model. Journal of ethnopharmacology 238: 111843. https://doi.org/10.1016/j.jep.2019.111843
Tsai, C.J., Leitzmann, M.F., Willett, W.C., and Giovannucci, E.L. (2004). Long-term intake of dietary fiber and decreased risk of cholecystectomy in women. Am. J. Gastroenterol. Jul, 99(7): 1364-70. doi: 10.1111/j.1572-0241.2004.30153.x.
Tsao, G. T., Zheng, Y., Lu, J., & Gong, C. S. (1997). Adsorption of heavy metal ions by immobilized phytic acid. Applied Biochemistry and Biotechnology, 63(1): 731. doi: 10.1007/BF02920471.
Turkez, H., Yousef, M.I., Geyikoglu, F. (2010). Propolis prevents aluminum induced genetic and hepatic damages in rat liver. Food Chem.Toxicol, 48: 2741-2746. doi: 10.1016/j.fct.2010.06.049.
Webster, F.H. (2002). Whole-grain oat and oat products: In Whole- Grain Foods in Health and Disease, eds L. Marquart, J. Slavin et al. American Association of Cereal Chemists, St. Paul, MN, pp: 83-124.
Yamaura, K., Nakayama, N., Shimada, M., Bi, Y., Fukata, H., Ueno, K.( 2012). Antidepressant-like effects of young green barley leaf (Hordeum vulgare L.) in the mouse forced swimming test. Pharmacognosy Res., 4:22-6. doi: 10.4103/0974-8490.91030
Yamaura, K., Tanaka, R., Bi, Y., Fukata, H., Oishi, N., Sato, H., Chisato, M., & Ueno, K. (2015). Protective effect of young green barley leaf (Hordeum vulgare L.) on restraint stress-induced decrease in hippocampal brain-derived neurotrophic factor in mice. Pharmacognosy Magazine, 11(Suppl 1): S86. doi: 10.4103/0973-1296.157702
Yu, Y.M., Chang, W.C., Chang, C.T., Hsieh, C.L., Tsai, C.E.( 2002b). Effects of young barley leaf extract and antioxidative vitamins on LDL oxidation and free radical scavenging activities in type 2 diabetes. Diabetes Metab.,28:107-14.
Yu, Y.M., Wu, C.H., Tseng, Y.H., Tsai, C.E., Chang, W.C. (2002a). Antioxidative and hypolipidemic effects of barley leaf essence in a rabbit model of atherosclerosis. Jpn J Pharmacol,89:142-8. doi: 10.1254/jjp.89.142.
Yuan, C. Y., Lee, Y. J. and Hsu, G. S. W. (2012). Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats. Journal of Biomedical Science, 19(1): 1-9. doi: 10.1186/1423-0127-19-51.
Zhou, m. (2010). Barley production and consumption. In: zhang, g. and li, c. (eds) Genetics and Improvement of Barley Malt Quality. Hangzhou: Zhejiang University Press; Berlin/Heidelberg: Springer
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)