##plugins.themes.bootstrap3.article.main##

Padma Marwah Ashok Marwah Paul V. Zimba Sue D’antonio

Abstract

We have developed a novel yet efficient method for the multi residue analysis of organic compounds of diverse polarities in water using Liquid Chromatography-Time of Flight mass spectrometry (LC-MS-TOF) equipped with a jet stream Electrospray ionization (ESI) source. Use of three different fragmentor voltages (low, medium and high) enabled the qualitative and quantitative analysis of a diverse range of targeted organic compounds in environmental waters. No prior optimization of compounds being quantified was required, the limiting factors were ionization behaviour of compounds under conditions of ESI and good chromatography. Same data file could be subjected to repeated post-run data analysis to figure out the presence of non-targeted compounds, including designer drugs if any. The technique has been illustrated with reference to a group of pesticides having diverse chromatographic and ionization behaviours. The optimized Solid Phase Extraction (SPE)  followed by method validation yielded a robust yet simple quantitative method for a group of fourteen pesticides. We were able to achieve quantitation at 10 ng/L or lower depending upon ionization behaviour of substrates against the usual regulatory requirement of 1000 ng/L. The method was used for targeted and non-targeted detection of pesticides in Nueces estuary waters, TX, USA, and several untargeted pesticides, pharmaceuticals and personal care products were identified.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Liquid Chromatography, Organic compound, Pesticides, Qualitative and Quantitative analysis

References
Alder, L., Greulich, K., Kempe, G., and Vieth, B. (2006). Residue analysis of 500 high priority pesticides: Better by GC–MS or LC–MS/MS? Mass Spectrom. Rev. 25(6), 838–865. doi:10.1 002/mas.20091.
Amelin, V. G., and Andoralov, A. M. (2015). High-performance liquid chromatography–time-of-flight mass spectrometry in the identification and determination of 111 pesticides in food, feed, water, and soil. J. Anal. Chem. 71(1), 82–93. doi:10.1134/s1061934815120035.
Arsand, J. B., Hoff, R. B., Jank, L., Dallegrave, A., Galeazzi, C., Barreto, F., and Pizzolato, T. M. (2018). Wide-Scope Determination of Pharmaceuticals and Pesticides in Water Samples: Qualitative and Confirmatory Screening Method Using LC-qTOF-MS. Water, Air, & Soil Pollution, 229(12), 399. doi:10.1007/s11270-018-4036-2.
Botero-Coy, A. M., Marín, J. M., Ibáñez, M., Sancho, J. V., and Hernández, F. (2011). Multi-residue determination of pesticides in tropical fruits using liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 402(7), 2287–2300. doi:10.1007/s00216-011-5431-3.
Botitsi, H. V., Garbis, S. D., Economou, A., and Tsipi, D. F. (2010). Current mass spectrometry strategies for the analysis of pesticides and their metabolites in food and water matrices. Mass Spectrom. Rev. 30, 907– 939. doi:10.1002/mas.20307.
Cotton, J., Leroux, F., Broudin, S., Poirel, M., Corman, B., Junot, C. and Ducruix, C. (2016). Development and validation of a multiresidue method for the analysis of more than 500 pesticides and drugs in water based on on-line and liquid chromatography coupled to high resolution mass spectrometry. Water Research, 104: 20–27. doi:10.1016/j.watres.2016.0 7.0 75.
Elbashir, A. A., and Aboul-Enein, H. Y. (2017). Application of gas and liquid chromatography coupled to time-of-flight mass spectrometry in pesticides: Multiresidue analysis. Biomed. Chromatog., 32(2), e4038. doi:10.1002/bmc.4038.
Gago-Ferrero, P., Bletsou, A. A., Damalas, D. E., Aalizadeh, R., Alygizakis, N. A., Singer, H. P., and Thomaidis, N. S. (2019). Wide-scope target screening of >2000 emerging contaminants in wastewater samples with UPLC-Q-TOF-HRMS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. J. Hazardous Materials, 121712. doi:10.1016/j.jhazma t.2019.1 21712.
Gao, L., Qin, D., Huang, X., Wu, S., Chen, Z., Tang, S., & Wang, P. (2019). Determination of pesticides and Pharmaceuticals from Fish Cultivation Water by parallel solid-phase extraction (SPE) and liquid chromatography–quadrupole time-of-flight mass spectrometry. Anal. Letters, 52: 1–15. doi:10.1080/00032719.2018.150907 6.
Holcapek, M. and Byrdwell, W.C. (2017) Eds. Handbook of Advanced Chromatography/Mass Spectrometry Techniques. Academic. Press London, UK.
Jaikwang, P., Junkuy, A., Ratana Sapbamrer, R., Seesen, M., Khacha-ananda, S., Mueangkhiao, P. and Wunnapuk, K. (2020). A Dilute-and-Shoot LC–MS/MS Method for Urinary Glyphosate and AMPA. Chromatographia Pub Date: 2020-01-08, DOI: 10.1007/s10337-019-03853-3.
Kharbouche, L., Gil García, M. D., Lozano, A., Hamaizi, H., and Galera, M. M. (2019). Solid phase extraction of pesticides from environmental waters using an MSU-1 mesoporous material and determination by UPLC-MS/MS. Talanta, 199, 612–619. doi:10.1016/j.talant a.2019.0 2.092.
Latrous El Atrache, L., Ben Sghaier, R., Bejaoui Kefi, B., Haldys, V., Dachraoui, M., and Tortajada, J. (2013). Factorial design optimization of experimental variables in preconcentration of carbamates pesticides in water samples using solid phase extraction and liquid chromatography–electrospray-mass spectrometry determination. Talanta, 117, 392–398. doi:10.101 6/j.tal an ta.20 13.09.032.
Lee, H.-J., Kadokami, K., and Oh, J.-E. (2020). Occurrences of microorganic pollutants in the Kumho River by a comprehensive target analysis using LC-Q/TOF-MS with sequential window acquisition of all theoretical fragment ion spectra (SWATH). Sci. Total Environ. 136508. doi:10.1016/j.scitotenv.2020.136 508.
Marwah, P., & Marwah, A. (2013). Ion funnel quadrupole time of Flight mass spectrometry: optimization for achieving all ion MS/MS and pseudo MSn. J. App. Nat. Sci., 5(1), 242-249. https://doi.org/10.31018/jans.v5i1.313.
Marwah, P., Marwah, A. and Zimba, P. (2020). Controlling formation of metal ion adducts and enhancing sensitivity in Liquid Chromatography Mass Spectrometry. J. Appl. Nat. Sci. 12(2), 180-192. https://doi.org/10.31018/jans.v12 i2.2277.
Masiá, A., Ibáñez, M., Blasco, C., Sancho, J.V., Picó, Y. and Hernández, F. (2013)Combined use of liquid chromatography triple quadrupole mass spectrometry and liquid chromatography quadrupole time-of-flight mass spectrometry in systematic screening of pesticides and other contaminants in water samples. Anal Chim Acta. 761:117-127. doi:10.1016/j.aca.20 12.1 1.032.
Primel, E., Caldas, S., and Escarrone, A. (2012). Multi-residue analytical methods for the determination of pesticides and PPCPs in water by LC-MS/MS: a review. Open Chemistry, 10(3) 876-899. doi:10.2478/s11532-012-0028-z.
Remane, D., Wissenbach, D. K., and Peters, F. T. (2016). Recent advances of liquid chromatography–(tandem) mass spectrometry in clinical and forensic toxicology — An update. Clin. Biochem., 49(13-14), 1051–1071. doi:10.1016/j.clinbiochem.2016.07.010.
Rousis, N. I., Bade, R., Bijlsma, L., Zuccato, E., Sancho, J. V., Hernandez, F., and Castiglioni, S. (2017). Monitoring a large number of pesticides and transformation products in water samples from Spain and Italy. Environ. Res., 156, 31–38. doi:10.1016/j.envres.2017.03.013.
Sabik, H., Jeannot, R., and Rondeau, B. (2000). Multiresidue methods using solid-phase extraction techniques for monitoring priority pesticides, including triazines and degradation products, in ground and surface waters. J. Chromatog. A, 885(1-2), 217–236. doi:10.1016/s0021-9673(99)01084-5.
Sardela, P. D. de O., Sardela, V. F., da Silva, A. M. dos S., Pereira, H. M. G., and de Aquino Neto, F. R. (2019). A pilot study of non-targeted screening for stimulant misuse using high-resolution mass spectrometry. Forensic Toxicology. doi:10.1007/s11419-019-00482-1.
Schänzer, W., and Thevis, M. (2015). Human sports drug testing by mass spectrometry. Mass Spectrom. Rev., 36(1), 16–46. doi:10.1002/mas.21479.
Sidhu, G. K., Singh, S., Kumar, V., Dhanjal, D. S., Datta, S., and Singh, J. (2019). Toxicity, monitoring and biodegradation of organophosphate pesticides: A review. Crit. Reviews Enviro. Sci. Techn., 1–53. doi:10.1080/1064338 9.2019.1565554.
Siuzdak, G. (2003). The Expanding role of mass spectrometry in Biotechnology. MCC Press, San Diego USA.
Tankiewicz, M., Fenik, J., & Biziuk, M. (2011). Solvent less and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: A review. Talanta, 86, 8–22. doi:10.1016/j.talanta.2011.0 8.056.
Citation Format
How to Cite
Marwah , P., Marwah, A., Zimba , P. V., & D’antonio, S. (2020). Targeted and non-targeted analysis of organic compounds of moderate polarity in water using liquid chromatography-time of flight mass spectrometry in all ion mode with particular reference to analysis of pesticides. Journal of Applied and Natural Science, 12(3), 299-311. https://doi.org/10.31018/jans.v12i3.2309
More Citation Formats:
Section
Research Articles