Article Main

Anjali Sharma Geeta Sumbali https://orcid.org/0000-0003-3893-3482

Abstract

Coal is an important non-renewable source of energy, which is being constantly used by mankind for various purposes. Coal mining activities affect the surrounding ecosystem by contaminating it with traces of toxic metals, which may accumulate and affect the diversity and abundance of biological communities. A number of microorganisms, such as, filamentous fungi, yeasts and bacteria are known to degrade coal by their enzymatic action and use it as the sole source of carbon. In addition, the indoor environments of coal mines possess bioaerosols, which may include living or dead allergens, pathogenic or non-pathogenic bacteria, fungi, viruses, mycotoxins, bacterial endotoxins, peptidoglycans, etc., that may cause skin, respiratory tract and other health problems. This article throws light on the impact of coal mining on the surrounding ecosystem, degradation of coal by the microbial inhabitants and their effects on the health of miners.

Article Details

Article Details

Keywords

Coal mines, Coal spoils, Microflora, Ecobiology, Microbial degradation, Miners health

References
Acharya, C., Sukla, L.B. and Misra, V.N. (2005). Biological elimination of sulphur from high sulphur coal by Aspergillus-like fungi. Fuel, 84: 1597–1600. doi: 10.1016/j.fuel.2005.02.020
Adekola, F.A., Baba, A.A. and Buhari, S. (2012). Physico-chemical characterization and speciation of sulphur of Nigerian coal samples. Journal of Minerals and Materials Characterization and Engineering, 11:965-969. doi: 10.4236/jmmce.2012.1110096
Ali, A., Sloane, D.R. and Strezov, V. (2018). Assessment of Impacts of Coal Mining in the Region of Sydney, Australia on the Aquatic Environment Using Macroinvertebrates and Chlorophyll as Indicators. Int. J. Environ. Res. Public Health, 15, 1556-1571; doi: 10.3390/ijerph15071556.
Ali, A.E., Strezov, V., Davies, P. and Wright, I. (2018). River sediment quality assessment using sediment quality indices for the Sydney basin, Australia affected by coal and coal seam gas mining. Sci. Total Environ., 616:695–702. doi: 10.1016/j.scitotenv.2017.10.259. 
Ali, AE., Strezov, V., Davies, P. and Wright, I. (2017). Environmental impact of coal mining and coal seam gas production on surface water quality in the Sydney basin, Australia. Environ. Monit. Assess., 189:408–423. doi:10.1007/s10661-017-6110-4
Allinson, G., Zhang, P., Bui, A., Allinson, M., Rose, G., Marshall, S. and Pettigrove, V. (2015). Pesticide and trace metal occurrence and aquatic benchmark exceedances in surface waters and sediments of urban wetlands and retention ponds in Melbourne, Australia. Environ. Sci. Pollut. Res., 22:10214–10226. doi: 10.1007/s11356-015-4206-3. 
Alvarez, M.B., Domini, C.E., Garrido, M., Lista, A.G. and Fernández-Band, B.S. (2011). Single-step chemical extraction procedures and chemometrics for assessment of heavy metal behavior in sediment samples from the Bahía Blanca estuary, Argentina. J. Soils Sediments. 11: 657–666. doi: 10.1007/s11368-011-0350-7. 
Aseefa, Y., Mc Culley, H., Murray, M. and Royales, S. (2013). Beyond the numbers. U.S. Bureau of Labor Statistics 2(3): 1–7.
Badman, D.G. and Jaffé, E.R. (1996). Blood and air pollution; state of knowledge and research needs. Otolaryngology–head and Neck Surgery. 114: 205-208. https://doi.org/10.1016/S0194-59989670166-3
Balachandran, M. (2013). Bio-demineralization of Indian bituminous coal by Aspergillus niger and characterization of products. Res J Biotechnol., 8:49-54.
Balachandran, M. and Elcey, C.D. (2010). Demineralization of coal by stepwise leaching: A study of sub-bituminous Indian coal by FTIR and SEM. J. Univ. Chem. Technol. Metallurgy, 45:385-390.
Barooah, P. and Baruah, M.K. (1996). Sulphur in Assam coal. Fuel Processing Technology. 46:83 -97. https://doi.org/10.1016/0378-3820(95)00058-5.
Barretti, T.W. and Benedict, H.W. (1970). Sulphur dioxide in recognition of air pollution injury to vegetation: A pictorial atlas. Air Pollution Control Association, Pittsburg, pp. 1-17.
Brook, C. (2014). Hazelwood coal mine fire February–March 2014: assessment of the short term health impacts in Morwell and the Latrobe Valley. Interim Report, Government of Victoria Department of Health, Melbourne. 
Cabral, J.P.S. (2010). Can we use indoor fungi as bioindicators of indoor air quality? Historical perspectives and open questions: Sci Total Environ., 408: 4285–4295. doi: 10.1016/j.scitotenv.2010.07.005. Epub 2010 Jul 23.
Cao, Q., Jia, B. and Chen, H. (2013). Multi-level control technology of coal mine accident risk. Disaster Adv., 6: 37–44.
Catcheside, D.E.A. and Mallett, K.J. (1991). Solubilization of Australian lignites by fungi and other microorganisms. Energy Fuel, 5:141-145. https://doi.org/10.1021/ef00025a025
Chikkatur, A., Sagar, A. and Sankar, T.L. (2009). Sustainable development of the Indian coal sector. Energy, 34: 942-953. doi:10.1016/j.energy.20 08.12.014.
Cohen, M.S. and Gabriele, P.D. (1982). Degradation of coal by the fungi Polyporus versicolor and Poria monticola. Appl. Environ. Microbiol., 44:23–27. doi: 0099-2240/82/070023-05$02.00/0
Cohen, R.A., Petsonk, E.L., Rose C, et al. (2016). pathology in u.s. coal workers with rapidly progressive pneumoconiosis implicates silica and silicates . Am J Resp Crit Care Med., 193:673–680.  doi: 10.1164/rccm.201505-1014OC
Cornell, K. (2016). Climate change and infectious disease patterns in the United States: Public health preparation and ecological restoration as a matter of justice. http://hdl.handle.net/11603/3006
Crawford, D.L. (1993). Microbial transformations of low ranks coal. CRC Press, Boca Raton, pp 223.
Drenda, J. (2012). Ocena klimatycznych warunków pracy górników w polskich kopalniach w?gla kamiennego i rudy miedzi. (Evaluation of the climatic conditions of miners working in the Polish coal and copper ore mines): Górnictwo i Geologia., 7:19–35.
Dutkiewicz, J. (1997). Bacteria and fungi in organic dust as potential health hazard. Ann Agric Environ Med., 4:11-16.
Engle, M., Olea, R., 'Keefe, J.O., Hower, J. and Geboy, N. (2013). Direct estimation of diffuse gaseous emissions from coal fires: current methods and future directions. Int. J. Coal Geol., 112: 164-172, doi:10.1016/j.coal.2012.10.005.
Faison, B.D. (1991). Microbial conversions of low rank coal. Biotechnol. J., 9:951–956. https://doi.org/10.1038/nbt1091-951
Fakoussa, R.M. (1981). Coal as a substrate for microorganisms: investigation of the microbial decomposition of (untreated) bituminous coals. Doctoral Thesis, Rhein Friedrich-Wilhelms University, Bonn.
Fakoussa, R.M. (1992). Mikroorganismen erschließen Kohle-Ressourcen. Bioengineering, 4:21-28.
Fakoussa, R.M. and Frost, P.J. (1999). In vivo decolourization of coal-derived humic acids by laccase-excreting fungus Trametes versicolor. Appl Microbiol Biotechnol., 52: 60-65. doi:10.1007/s002530051487
Fakoussa, R.M. and Hofrichter, M. (1999). Biotechnology and microbiology of coal degradation. Appl Microbiol Biotechnol., 52:25–40. doi: 10.1007/s002530051483
FCMHSA Federal Coal Mine Health and Safety Act of 1969 Public Law 91-173, 30 U.S.C. ch. 22, 801 et seq. 1969.
Fischer, F. and Fuchs, W. (1927). Uber das Wachstum von Schimmelpilzen auf Kohle. Brennstoff-Chemie, 8:231–233.
Frisvad, J.C., Lund, F., Samson, R.A., Hoekstram, E.S. and Filtenborg, O. (2004). Introduction to Food and Airborne Fungi. ASM Press, 7th edition, Netherlands, 283-297. 389 pp.
Galle, E. (1910). Centralb.f.Bakteriol., Abt.,11:461–73.
Gamboa, P.M., Jáuregui, I., Urrutia, I., Antépara, I., González, G. and Múgica. (1996). Occupational asthma in a coal miner. Thorax, 51: 867–868. doi:10.1136/thx.51.8.867.
Ghose, M.K. (2001). Management of topsoil for geo-environmental reclamation of coal mining areas. Environ Geol., 40:1405-1410. doi:10.1007/ s002540100321
Giam, X., Olden, J.D. and Daniel, S. (2018). Impact of coal mining on stream biodiversity in the US and its regulatory implications. Nat. Sustain., 1: 176 doi: 10.1038/s41893-018-0048-6
Goswami, S. (2015). Impact of Coal Mining on Environment. European Researcher, 92:185-196. doi: 10.13187/er.2015.92.185.
Gotz, G.K.E. and Fakoussa, R.M. (1999). Fungal biosolubilization of Rhenish brown coal monitored by Curie point pyrolysis/gas chromatography/mass spectrometry using tetraethyl ammonium hydroxide. Appl Microbiol Biotechnol., 52:41–48. https://doi.org/10.1007/s002530051484
Hofrichter, M., Bublitz, F. and Fritsche, W. (1997). Fungal attack on coal: I. Modification of hard coal by fungi. Fuel Process. Technol., 52:43–53. https://doi.org/10.1016/S0378-3820(97)00014-3
Holker, U., Schmiers, H., Grosse, S., Winkelhfer, M., Polsakiewicz, M. Ludwig, S.,  Dohse J and Höfer M. (2002). Solubilization of low-rank coal by Trichoderma atroviride: : evidence for the involvement of hydrolytic and oxidative enzymes by using 14C-labelled lignite. J. Ind. Microbiol. Biotechnol., 28: 207–212. doi:10.1038/sj/jim/7000232
Igbinigie, E.E., Aktins, S., van Breugel, Y., van Dyke S., Davies-Coleman, M.T. and Rose, P.D. (2008). Fungal biodegradation of hard coal by a newly reported isolate, Neosartorya fischeri. Biotechnol. J., 3:1407–1416. doi:10.1002/biot.200800227
Jelic, T.M., Estalilla, O.C., Sawyer-Kaplan, P.R., Plata, M.J., Powers, J.T., Emmett, M. and Kuenstner, J.T. (2017). Coal mine dust desquamative chronic interstitial pneumonia: a precursor of dust-related diffuse fibrosis and of emphysema . Int J Occup Environ Med., 8: 153 –165.  doi: 10.15171/ijoem.2017.1066.
Jiang, L., Lin, M., Zhang, Y., Li, Y.P., Xu, X. and Li, S. (2013). Identification and characterization of a novel trehalose synthase gene derived from saline-alkali soil metagenomes. PLoS One, 8:1–11. doi: 10.1371/journal.pone.0077437.
Johnstone, K.M., Rainbow, P.S., Clark, P.F., Smith, B.D. and Morritt, D. (2016). Trace metal bioavailabilities in the Thames estuary: Continuing decline in the 21st century. J. Mar. Biol. Assoc. UK., 96:205–216. doi: 10.1017/S0025315415001952.
Kar, D. and Palit, D. (2017). Study of physico-chemical characteristics of overburden dump soil in selected coal mining areas of Raniganj coal fields, West Bengal, India. International Research Journal of Natural and Applied Sciences, 4:1-12.
Kelsall, J.E., Samet, J.M.,  Zeger, S.L. and  Xu, J.  (1997). Air pollution and mortality in Philadelphia, 1974–1988. Am J Epidemiol., 146:750-762. doi:10.1093/oxfordjournals.aje.a009351
Laborda, F., Fernandez, M., Luna, N. and Monistral, I.F. (1997). Study of the mechanisms by which microorganisms solubilize and/or liquefy Spanish coals. Fuel Process. Technol., 52:95–107. doi: 10.1016/S0378-3820(97)00019-2
Lieske, R. and Hofmann, E. (1928). Untersuchungen fiber die Mikrobiologie der Kohlen und ihrer naturlichen Lagerstatten. I. Mitteilung: Die Mikroflora der Braunkohlengruben. Brennstoff-Chemie, 9:174-178.
Lipman CB (1937) Bacteria in coal. J Bacteriol., 34: 483–488 PubMed PMID: 16560072; PubMed Central PMCID: PMC545253.
Lovesan, V.J., Kumar, N. and Singh, T.N. (1998). Effect of the bulk density on the growth and biomass of the selected grasses over overburden dumps around coal mining areas, Proceedings of the  7th National  Symposium on Environment,  Dhanbad, Jharkhand, India. pp., 182­-185. 
Ma, J. and Dai, H. (2017). A methodology to construct warning index system for coal mine safety based on collaborative management. Saf. Sci., 93:86–95. doi: 10.1016/j.ssci.2016.11.012. 
Machnikowska, H., Pawelec, K. and Podgorska, A. (2002). Microbial degradation of low rank coals. Fuel Process. Technol., 77:17–23. https://doi.org/10.1016/S0378-3820(02)00064-4
Maharana, J.K. and Patel, A.K. (2013). Physico-chemical characterization and mine soil genesis in age series coal mine overburden spoil in chronosequence in a dry tropical environment. J Phylogen Evolution Biol. 1: 101-107 doi: 10.4172/2329-9002.1000101
Makdoh, K. and Kayang, H. (2015). Soil physico-chemical properties in coal mining areas of Khliehriat, East Jaintia Hills District, Meghalaya, India. Int. Res. J. Environ. Sci., 4:69-76.
Mishra, V.K. and Shukla, R. (2016). Aquatic macrophytes for the removal of heavy metals from coal mining effluent. In: Ansari A.A., Gill A.A., Lanza R., Newman G., editors. Phytoremediation: Management of Environmental Contaminants. Volume 3. Springer International Publishing; Cham, Switzerland pp. 143–156.
Monistral, I.F. and Laborda, F. (1994). Liquefaction and or solubilization of Spanish coals by newly isolated microorganisms. Fuel Process. Technol., 40:205-216. https://doi.org/10.1016/0378-3820(94)90143-0
Nie, B., Huang, X., Xue, F., Chen, J., Liu, X., Meng, Y. and Huang, J. (2018). A comparative study of vocational education and occupational safety and health training in China and the UK. Int. J. Occup. Saf. Ergon., 24, 268–277. https://doi.org/10.1080/10803548.2016.1270042
Nigam, G.K., Sahu, R.K., Jitendra, S. and Sonwanshi, R.N. (2015). A study on physico-chemical characteristics of open cast mine water. J Ind Pollut Contr., 31: 119-127.
Nyakuma, B.B. (2015). Physicochemical characterization of low rank Nigerian coals arXiv preprint arXiv: 1506.02068.
Obtu?owicz, K. (2006). Environment and its impact on allergy. Problemy Higieny i Epidemiologii., 87: 359–363.
Osipowicz, B., Jablonski, L., Siewinski, A. and Rymkiewicz, A. (1994). Biodegradation of hard coal and its organic extract by selected microorganisms. Fuel, 73:1858-1862.
Pagenkopf, G.K. (1983). Gill surface interaction model for trace-metal toxicity to fishes: Role of complexation, pH, and water hardness. Environ. Sci. Technol., 17:342–347. doi: 10.1021/es00112a007. 
Perret, J.L., Plush, B., Lachapelle, P., Hinks, T.S.C., Walter, C., Clarke, P., Irving, L., Brady, P., Dharmage, S.C. and Stewart, A. (2017). Coal mine dust lung disease in the modern era. Respirology, 22:662-670. doi: 10.1111/resp.13034.
Piontek, M. and Bednar, K. (2010). Biodeteriogenne grzyby w kopalniach w?gla kamiennego (Biodeteriogenic molds in coal mines): Zeszyty Naukowe Uniwersytetu Zielonogórskiego, In?ynieria ?rodowiska. v. 18, p. 57–63.
Plakolli, F., Beqiri, L.P. and Millaku, A. (2010). The microflora and physico-chemical properties of lignite from the Mirash mine, near Kastriot. Mater. Sci. Technol., 44:271–275.
Pollock, D.E., Potts, J.D. and Joy, G.J. (2010). Investigation into dust exposures and mining practices in mines in the southern Appalachian region. Min Eng., 62:44-49.
Polman, J.K., Stoner, D.L. and Delezene-Briggs, K.M. (1994). Bioconversion of coal, lignin and dimethoxybenzyl alcohol by Penicillium citrinum. J Ind Microbiol Biotechnol., 13:292–299. https://doi.org/10.1007/BF01569731
Potter, M.C. (1908). Bacteria as agents in the oxidation of amorphous carbon. Proceedings of the Royal Society of London. Series B, containing papers of a biological character, 80:239–259. https://doi.org/10.1098/rspb.1908.0023
Prasanth, A., Nila, A., Bhuvaneswari, S.N. and Udaya Prakash, N.K. (2011). An investigation on airborne mycoflora near lignite mine in Tamil Nadu, India. Int J Appl Biol Pharm., 2:35–39.
Quigley, D.R., Wey, J.E., Breckenridge, C.R. and Stoner, D.L. (1988). The influence of pH on biological solubilization of oxidized low-rank coal. Resour Conserv Recycl., 1:163–174.
Rai, A.K., Paul, B. and Singh, G. (2011). A study on physico chemical properties of overburden dump materials from selected coal mining areas of Jharia coalfields, Jharkhand, India. International Journal of Environmental Sciences, 1:1350-1360.
Rajak, K.K., Yadav, B.K., Mandal, R.B.., Saxena, V.K. and Mandre, N.R. (2014). Bio-desulphurization of Makum (Assam) coal. Proceedings of the XI International Seminar on Mineral Processing Technology. pp. 976–980.
Ralte, V. (2017). Effect of coal mining on soil physico-chemical properties of Nokrek Biosphere Reserve of Meghalaya, northeastern India. Science Vision, 17: 228-237. 10.33493/scivis.17.04.07.
Rdzanek, M., Pusz, W., G?barowska, E., and Pl?skowska, E. (2015). Airborne bacteria and fungi in a coal mine in Poland. J Cave Karst Stud., 77:177–182. doi: 10.4311/2015MB0102
Schroeder, H. (1914). The bacterial content of coal. Zentralblatt für Bakteriologie, 41: 460-469.
Selvi, V.A., Banerjee, R., Ram, L.C. and Singh, G. (2009). Biodepolymerization of low rank Indian coal. World J Microbiol Biotechnol., 25:713–720.
Sharma, A. (2016). Studies on the fungal flora of two coal mines of Jammu province. M.Phil Dissertation, University of Jammu, India.
Sharma, A. and Sumbali, G. (2017). Prevalence of fungal flora in the acidic environment of anthracite and lignite coal mines of Jammu. Bulletin of Environment, Pharmacology and Life Sciences, 6:86-93.
Silva, L., Oliveira, M., Phillipi, V., Serra, C., Dai, S., Xue, W., Chen, W., O'Keefe J, Romanek, C., Hopps, S. and Hower, J.  (2012). Geochemistry of carbon nanotube assemblages in coal fire soot, Ruth Mullins fire, Perry County, Kentucky. Int. J. Coal Geol., 94: 206-213, 10.1016/j.coal.2011.04.003.
Silva-Stenico, M.E., Vengadajellum, C.J., Janjua, H.A., Harrison, S.T.L., Burton, S.G. and Cowan, D.A. (2007). Degradation of low rank coal by Trichoderma atroviride ES11. J Ind Microbiol Biotechnol., 34:625–631. doi: 10.1007/s10295-007-0223-7
Stewart, D.L., Thomas, B.L., Bean, R.M. and Fredrickson, J.K. (1990). Colonization and degradation of oxidized bituminous and lignite coals by fungi. J. Indust. Microbiol., 6:53-59.
Tao, X.X., Chen, H., Shi, K.Y. and Lv, Z.P. (2010). Identification and biological characteristics of a newly isolated fungus Hypocrea lixii and its role in lignite bioconversion. Afr. J. Microbiol. Res., 4:1842–1847.
Taylor, T.N., Taylor, E.L. and Krings, M. (2009). Paleobotany: The biology and evolution of fossil plants. Amsterdam; Boston: Academic Press, ISBN 978-0-12-373972-8. 
Tian, R. (2012). Practices and considerations on management of coal mine occupational safety and health. Coal Eng., 10: 132–134.
Tripathi, R.C., Jain, V.K. and Tripathi, P.S.M. (2009). Fungal biosolubilization of Neyveli lignite into humic acid. Energ Source., 32:72–82. https://doi.org/10.1080/15567030802464354
Tulsiyan, R.K., Sinha, N.K. and Kumar, V. (2017) Isolation and identification of fungi from coal mines near Hazaribagh and their diversity study . J Cell Sci Apo., 1: 102-103.
US Energy Information Administration (2017). Coal Explained. Energy Explained. https://www.eia.gov/energyexplained/index.php?page=coal_home
Volland, S., Bayer, E., Baumgartner, V., Andosch, A., Lütz, C., Sima, E. and Lütz-Meindl, U. (2014). Rescue of heavy metal effects on cell physiology of the algal model system micrasterias by divalent ions. J. Plant Physiol., 171:154–163. doi: 10.1016/j.jplph.2013.10.002.
 Wang, J.Z., Peng, S.C., Chen, T.H. and Zhang, L. (2016). Occurrence, source identification and ecological risk evaluation of metal elements in surface sediment: Toward a comprehensive understanding of heavy metal pollution in Chaohu Lake, Eastern China. Environ. Sci. Pollut. Res., 23:307–314. doi: 10.1007/s11356-015-5246-4. 
Winner, W.E., Mooney, H.A. and Robert, A, (1985). Goldstein Sulfur dioxide and vegetation: Physiology, ecology, and policy issues. Stanford University Press.
Yoltas, A., Gunyar, O.A., Uztan, A.H., Ates, M. and Boyacioglu, H. (2015). Determination and statistical analyses of the total microfungal flora of a coal mine in Manisa. J. Appl. Biol. Sci., 9: 73-81.
Yuan, H., Yang, J. and Chen, W. (2006). Production of alkaline materials, surfactants and enzymes by Penicillium decumbens strain P6 in association with lignite degradation/solubilization. Fuel, 85:1378–1382 doi10.1016/j.fuel.2005.12.003 
Zhou, L., Cao, Q., Yu, K., Wang, L. and Wang, H. (2018). Research on Occupational Safety, Health Management and Risk Control Technology in Coal Mines. Int J Environ Res Public Health, 15(5): 868 doi:  [10.3390/ijerph15050868]
Section
Research Articles

How to Cite

Ecobiology of coal mines and spoils. (2019). Journal of Applied and Natural Science, 11(3), 624-631. https://doi.org/10.31018/jans.v11i3.2130