Potential of distillery effluents for safe water through vermifiltration
Article Main
Abstract
Vermifiltration of wastewater using waste eater earthworms is a newly conceived novel technology. The present study evaluated BOD, COD and TS showing significant variation in decrease by 95%, 90% and 80% respectively through vermifiltration of distillery effluents. The nutrient contents (TN, TP, TK, TCa and TMg) in the vermicasts had increase (1.82 % in TN, 0.24% in TP, 2.15% in TK, 2.07% in TCa and 2.86 % in TMg) in the range of fold than the control level. The morphology of the control and experimental vermicast samples were analyzed with SEM and the image showed significant variation. The FT-IR spectrum analysis showed reduction of aliphatic/aromatic (C=C and OH) compounds in the vermicompost. Thus, the present study significantly highlights the vermifiltration technology in treating distillery effluent.
Article Details
Article Details
Earthworms, Distillery Effluents, Vermifiltration, HRT, Vermicast, FT-IR
Aguilera, M.L. (2003). Purification of wastewater by vermifiltration. Doctoral Thesis. University of Montpellier 2, pp: 188.
Aira, M., Monroy, F. and Dominguez, J. (2007). Eisenia fetida (Oligochaeta, Lumbricidae) modifies the structure and physiological capabilities of microbial communities improving carbon mineralization during vermicomposting of pigmanure. Microbial Ecol., 54(4): 662-671. DOI: 10.1007/s00248-007-9223-4.
APHA. 2012. Standard Methods for the Examination of Water and Wastewater. 22nd Edition. Published by the American Public Health Association, American Water and Waterworks Association and Water Environment Federation.
Arora, S., Rajpal, A., Bhargava, R., Pruthi, V., Bhatia, A. and Kazmi, A.A. (2014). Antibacterial and enzymatic activity of microbial community during wastewater treatment by pilot scale vermifiltration system. Bioresource Technology, 166: 132-141. DOI:10.1016/j.biortech.2014.05.041.
Azuar, S.A. and Ibrahim, M.H. (2012). Comparison of sand and oil palm fibre vermibeds in filtration of palm oil mill effluent (POME). UMT 11th International Annual Symposium on Sustainability Science and Management, 09th-11th July 2012, Terengganu, Malaysia, 1414-1419.
Battacharya, S.S. and Chattopadhyay, G. (2004). Transformation of nitrogen during vermicomposting of flyash. Waste Manage. Res., 22(6): 488-491. DOI:10.1177/0734242X04048625.
Busato, G.J., Livia, L.S., Natalia, A.O., Canellas, P.L. and Olivares, L.F. (2012). Changes in labile phosphorus forms during maturation of vermicompost enriched with phosphorus-solubilizing and diazotrophic bacteria. Bioresour. Technol., 110: 390-395. https://doi.org/10.1016/j.biortech.2012.01.126.
Carrasquero-Duran, A. and Flores, I. (2009). Evaluation of lead (II) immobilization by a vermicompost using adsorption isotherms and IR spectroscopy. Bioresour. Technol., 100(4): 1691-1694. https://doi.org/10.1016/j.biortech.2008.09.013.
Chowdhary, P., Yadav, A., Kaithwas, G. and Bharagava, R.N. (2017). Distillery Wastewater: A Major Source of Environmental Pollution and Its Biological Treatment for Environmental Safety. Publisher: Springer: Green Technologies and Environmental Sustainability, pp. 409-435. DOI:10.1007/978-3-319-50654-8.
Contreras-Ramos, S.M., Alvarez-Bernal, D., Trujillo-Tapia, N. and Dendooven, L. (2004). Composting of tannery effluent with cow manure and wheat straw. Bioresour. Technol., 94 (2): 223-228. https://doi.org/10.1016/j.biortech.2003.12.001.
Cooper, P.F., Job, G.D., Green, M.B. and Shutes, R.B.E. (1996). Reed Beds and Constructed Wetlands for Wastewater Treatment, WRc Publications, Medmenham, Marlow, UK.
CPCB, (2018). Central Pollution Control Board. Annual report; 2017–2018.
Dominguez, J. (2004). State of the art and new perspectives on vermicomposting research. In: Edwards, CA. (Ed.), Earthworm Ecology, second ed. CRC Press, 401-424.
Elissen, H.J.H., Hendrickx, T.L.G., Temmink, H., Buisman, C.J.N., 2006. A new reactor concept for sludge reduction using aquatic worms. Water Res., 40(20): 3713-3718. https://doi.org/10.1016/j.watres.2006.08.029.
Ellerbrock, R.H. and Kaiser, M. (2005). Stability and composition of different soluble soil organic matter fractions – evidence from d13C and FTIR signatures. Geoderma., 128: 28–37. DOI: 10.1016/j.geoderma.2004.12.025.
Galle, T., Lagen, B.V., Kurtenbach, A. and Bierl, R. (2004). An FTIR-DRIFT study on river sediment particle structure: implications for biofilm dynamic an pollutant binding. Environ. Sci. Technol., 38(17): 4496-4502. https://doi.org/10.1021/es040005m.
Garkal, D.J. and Jadhao, R.K. (2014). A pilot scale study of vermin-biofilter (VBF) for residential quarter wastewater. Inter. J. Curr. Resea. Chem.& Pharmace. Sci., 1(6): 71-76.
Ghatnekar, S.D., Kavin, M.F., Sharma, S.M., Ghatnekar, S.S. and Ghatnekar, A.V. (2010). Application of vermifilter based effluent treatment plant (Pilot scale) for biomanagement of liquid effluents from the gelatine industry. Dynamic soil, Dynamic plant, 4(1): 83-88.
Grube, M., Lin, J.G., Lee, P.H. and Kokorevicha, S. (2006). Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma, 130 (3-4): 324-333. https://doi.org/10.1016/j.geoderma.2005.02.005.
Gupta, R. and Garg, V.K. (2010). Nutrient recycling of different solid organic wastes employing an epigeic earthworm Eisenia fetida. World Review of Science, Technology Sustainable Development, 7 (3): 239-258. DOI: 10.1504/WRSTSD.2010.032527.
Hafidi, M., Amir, S. and Revel, J.C. (2005). Structure characterization of ovlive mill wastewater after aerobic digestion using elemental analysis, FTIR and 13C NMR. Process Biochem., 40(8): 2615-2622. DOI: 10.1016/j.procbio.2004.06.062.
He, X., Xi, B., Wei, Z., Guo, X., Li, M., An, D. and Liu, H. (2011). Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste. Chemosphere, 82(4): 541-548. https://doi.org/10.1016/j.chemosphere.2010.10.057.
Huag, G.F., Wu, Q.T., Wong, J.W.C. and Nagar, B.B. (2006). Transformation of organic matter during co composting of pig manure with saw dust. Bioresour. Technol., 97: 1834-1842. https://doi.org/10.1016/j.biortech.2005.08.024.
Jackson, M.L. (1975). Soil Chemical Analysis. Prentice Hall of India, New Delhi.
Kannadasan, N., Nirmala Natarajan, Anbusaravanan, N., Sekar, P. and Krishnamoorthy, R. (2013). Assessment of sustainable vermiconversion of water hyacinth by Eudrilus eugeniae and Eisenia fetida. Journal of Applied and Natural Science, 5(2): 451-454. https://doi.org/10.31018/jans.v11i2.2024.
Karthika, A., Vasanthy, M., Seethdevi, G. and Swabna, V. (2015). Efficacy of vermicomposting for recycling Tectona grandis and Casuarina leaf litter for organic fertilizer production. Indian j. advan. Chemi. Sci., 3(2): 122-127.
Kaur, A., Singh, J., Vig, A.P., Dhaliwal, S.S. and Rup, P.J. (2010). Co-composting with and without Eisenia fetida for conversion of toxic paper mill sludge to a soil conditioner. Bioresour. Technol., 101 (21): 8192-8198. DOI: 10.1016/j.biortech.2010.05.041.
Kumar, T., Rajpal, A., Bhargava, R. and Prasad, K.S. (2014). Performance evaluation of vermifilter at different hydraulic loading rate using riverbed material. Ecol. Eng., 62: 77-82. http://dx.doi.org/10.1016/j.ecoleng.2013.10.028.
Li, X., Xing, M., Yang, J. and Huang, Z. (2011). Compositional and functional features of humic acid-like fractions from vermicomposting of sewage sludge and cow dung. J. Hazard. Mater., 185: 740–748. https://doi.org/10.1016/j.jhazmat.2010.09.081.
Manyuchi, M.M., Phiri, A., Chirinda, N., Muredzi, P., Govha, J. and Sengudzwa, T. (2012). Vermicomposting of Waste Corn Pulp Blended with Cow Dung Manure using Eisenia fetida. World Academy. Sci. Eng. & Technol., 68: 1306-1309.
Nayak, P.S. and Singh, B.K. (2007). Instrumental characterization of clay by XRF, XRD and FTIR. Bull. Mater. Sci., 30(3): 235-238. https://doi.org/10.1007/s12034-007-0042-5.
Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L.A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate, Circ. US Dept. Agric, pp. 939.
Rajpal, A., Bhargava, R., Sasi, S.K. and Chopra, A.K. (2012). On site domestic organic waste treatment through vermitechnology using indigenous earthworm species. Waste Manage. & Rese., 30(3): 266-275. https://doi.org/10.1177/0734242X11403798.
Ravindran, B., Dinesh, S.L., John Kennedy, L. and Sekaran, G. (2008). Vermicomposting of Solid Waste Generated from Leather Industries using epigeic earthworm Eisenia fetida. Appl. Biochem. Biotechnol., 151(2-3): 480-484. DOI:10.1007/s12010-008-8222-3.
Romero, E., Plaza, C., Senesi, N., Nogales, R. and Polo, A. (2007). Humic acid-like fractions in raw and vermicomposted winery and distillery wastes. Geoderma., 139: 397– 406. https://doi.org/10.1016/j.geoderma.2007.03.009.
Senesi, N. and Brunetti, G. (1996). Chemical and physico-chemical parameters for quality evaluation of humic substances produced during composting. The Science of Composting, Netherlands: Springer, pp: 195-212. https://doi.org/10.1007/978-94-009-1569-5_20.
Senthil Kumar, D., Satheesh Kumar, P., Rajendran, N.M. and Anbuganapathi, G. (2013). Compost maturity assessment using physicochemical, solid-state spectroscopy, and plant bioassay analysis, Journal of Agricultural and Food Chemistry, 61 (47): 11326-11331. DOI: 10.1021/jf4034943.
Sharma, M.K. and Kazmi, A.A. (2014). Effect of physical property of supporting media and variable hydraulic loading on hydraulic characteristics of advanced onsite wastewater treatment system. Envir. Technol., 36(11): 1-9.
Sharma, M.K., khursheed, A. and Kazmi, A.A. (2014). Modified septic tank-anaerobic filter unit as a two-stage onsite domestic wastewater treatment system. Envirn. Technol., 35: 2183-2193. DOI: 10.1080/09593330.2014.896950.
Simard, R.R. (1993). Ammonium acetate extractable elements. In: Martin, R., Carter, S. (Eds.), Soil Sampling and Methods of Analysis, Lewis Publisher, FL, USA, pp. 39-43.
Simkovic, I., Dlapa, P., Doerr, S.H., Mataix-Sol-Era, J. and Sasinkova, V. (2008). Thermal destruction of soil water repellency and associated changes to soil organic matters as observed by FTIR spectroscopy. Catena, 74(3): 205-211. DOI: 10.1016/j.catena.2008.03.003.
Sinha, R.K., Bharambe, G. and Chowdhary, U. (2008). Sewage treatment by vermifiltration with synchronous treatment of sludge by earthworms a low-cost sustainable technology over conventional systems with potential for decentralization. The environmentalist, 28: 409-420. https://doi.org/10.1007/s10669-008-9162-8.
Suthar, S. (2008). Bioconversion of post harvest crop residues and cattle shed manure into value-added products using earthworm Eudrilus eugeniae (Kinberg). Ecol. Eng., 32: 206-214. https://doi.org/10.1016/j.ecoleng.2007.11.002.
Suthar, S. (2009). Vermicomposting of vegetable-market solid waste using Eisenia fetida: impact of bulking material on earthworm growth and decomposition rate. Ecol. Eng., 35: 914-920. https://doi.org/10.1016/j.ecoleng.2008.12.019.
Suthar, S. (2010). Pilot-scale vermireactors for sewage sludge stabilization and metal remediation process: Comparison with small-scale vermireactors. Ecol. Eng., 36: 703-712. DOI:10.1016/j.ecoleng.2009.12.016.
Tomar, P. and Suthar, S. (2011). Urban wastewater treatment using vermi-biofiltration system. Desalination, 282: 95-103. DOI:10.1016/j.desal.2011.09.007.
Vymazal, J., Brix, H., Cooper, P.F., Haberal, R., Perfler, R. and Laber, J. (1998). Removal mechanisms and types of constructed wetlands, Backhuys Publishers, Leiden, The Netherlands, 17-66.
Wang, S., Yang, Y., Lou, S. and Yang, J. (2010). Wastewater treatment performance of a vermifilter enhancement by converter slag-coal cinder filter. Ecol. Eng., 36: 489-494. DOI:10.1016/j.ecoleng.2009.11.018.
Xing, M., Zhao, L., Yang, J., Huang, Z. and Xu, Z. (2011). Distribution and transformation of organic matter during liquid-state vermiconversion of activated sludge using elemental analysis and spectroscopic evaluation. Environ. Eng. Sci., 28: 619-626. DOI: 10.1089/ees.2010.0188.
Yang, J., Lv, B., Zhang, J. and Xing, M. (2014). Insight into the roles of earthworm in vermicomposting of sewage sludge by determining the water-extracts through chemical and spectroscopic methods. Bioresour. Technol., 154: 94-100. http://dx.doi.org/10.1 016/j.biortech.2013.12.023.
Zhao, L., Wang, Y., Yang, J., Xing, M., Li, X., Yi, D. and Deng, D. (2010). Earthworm-microorganism interactions: A strategy to stabilize domestic wastewater sludge. Water Res., 44: 2572-2582. DOI:10.1016/j.watres.2010.01.011.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)