##plugins.themes.bootstrap3.article.main##

Ashok Aggarwal Nisha Kadian Anju Tanwar Alpa Yadav K. K. Gupta

Abstract

Mycorrhizal symbiosis is a highly evolved mutually beneficial relationship that exists between Arbuscular Mycorrhizal Fungi (AMF) and most of the vascular plants. The majority of the terrestrial plants form association with Vesicular Arbuscular Mycorrhiza (VAM) or Arbuscular Mycorrhizal fungi (AMF). This symbiosis confers benefits directly to the host plant’s growth and development through the acquisition of Phosphorus (P) and other mineral nutrients from the soil by the AMF. In addition, their function ranges from stress alleviation to bioremediation in soils polluted with heavy metals. They may also enhance the protection of plants against pathogens and increases the plant diversity. This is achieved by the growth of AMF mycelium within the host root (intra radical) and out into the soil (extra radical) beyond. Proper management of Arbuscular Mycorrhizal fungi has the potential to improve the profitability and sustainability of agricultural systems. In this review article, the discussion is restricted to the mycorrhizal benefits and their role in sustainable development.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Arbuscular Mycorrhizal fungi, Sustainable development, Growth improvement, Nutrient uptake

References
Abbott, L.K. and Gazey, C. (1994). An ecological view of the formation of VA mycorrhizas. Plant and Soil, 159: 69-78.
Adholeya, A., Tiwari, P. and Singh, R. (2005). Commercial production of AMF inoculum and its inoculation strategies. In: S. Declerck and A. Verma, (Eds.), Root-organ culture of mycorrhizal fungi (pp 5-7), USA.
Al-Karaki, G.N. (2000). Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10: 51-54.
Al-Karaki, G.M. (2006). Nursery inoculation of tomato with arbuscular-mycorrhizal fungi and subsequent performance under irrigation with saline water. Scientia Horticulture, 109: 1-7.
Allen, M.F., Moore, T.S. and Christensen, M. (1982). Phytohormone changes in altered levels of gibberellin-like substances and abscisic acid in the as affected by vesiculararbuscular mycorrhizae. Plant and Soil,121-130.
Auge, R.M., Schekel, K.A. and Wample, R.L. (1986). Greater leaf conductance of well-watered VA mycorrhizal rose plants is not related to phosphorus nutrition. New Phytol., 103: 107-116.
Barea, J.M. (1991). Vesicular-arbuscular mycorrhizae as modifiers of soil fertility. Adv. Soil Sci., 15: 1-40.
Besmer, Y.L. and Koide, R.T. (1999). Effect of mycorrhizal colonization and P on ethylene production by snapdragon (Antirrhinum majus L.) flower. Mycorrhiza, 9: 161-166.
Bevege, D.I., Bowen, G.D. and Skinner, M.F. (1975). Comparative carbohydrate physiology of ecto and endomycorrhizas. In: F.E. Sanders, B. Mosse and P.B. Tinker (Eds.), Endomycorrhizas (pp 149-175), Academic Press, New York.
Bhat, P.R. and Kaveriappa, K.M. (2007). Effect of AM fungi on the growth and nutrition uptake in some endemic Myristicaceae members of the Western ghats, India. In: M. Tiwari. and S.C. Sati (Eds.), The Mycorrhizae: Diversity, Ecology and Application (pp 295-309), Daya Pub. House, Delhi.
Bidartondo, M.I., Burghardt, B. and Gebauer, G. (2004). Changing partners in the dark: Isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proceedings of the Royal Society, 271:1799-1806.
Blilov, I.P., Bueno, J.A., Ocampo and Garcia-Garrido, J. (2000). Introduction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal Glomus mosseae. Mycol. Res., 104: 722-725.
Bowler, C., Van Montagu, M. and Inze, D. (1992). Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol. and Plant Mol. Biol., 43: 83-116.
Brundrett, M. (2004). Diversity and classification of mycorrhizal associations. Biol. Rev., 79: 473-495.
Catherine, A.G. and Witham, T.G. (1994). Interactions between above ground herbivores and the mycorrhizal mutualists of plants. Trends in Ecology and Evolution, 9: 251-255.
Chang, D.C.N. (1994). What is the potential for management of vesicular-arbuscular mycorrhizae in horticulture? In: A.D. Robson, L.K Abbott and N. Malajczuk (Eds.), Management of mycorrhizas in agriculture, horticulture and forestry, (pp 187-190). Kluwer, Dordrecht.
Chilvers, G.A., Laperyrie, F.F. and Horan, D.P. (1987). Ectomycorrhizal vs. endomycorrhizal fungi with in the same root systems. New Phytol., 97: 441-448.
Clark, R.B. and Zeto, S.K. (2000). Mineral acquisition by arbuscular mycorrhizal plants. J. Plant Nutr., 23: 867-902.
Dehne, H.W. (1982). Interaction between vesicular mycorrhizal fungi and plant pathogens. Phytopathology, 72: 1115-1119.
Dhruva Kumar, J.H.A., Sharha, G.D., Mishra, R.R. (1992). Soil microbial population numbers and enzyme activities in relation to altitude and forest degradation. Soil Biol. Biochem. 24 : 761–767.
Diaz, G.C., Azcon, Aguilar and Honrubia, M. (1996). Influence of vesicular-arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake on growth of Lygeum spartum and Anthylis cystisoides. Plant and Soil, 180: 241-249.
Dickie, I.A., Koide, R.T. and Fayish, A.C. (2001). Vesicular- Arbuscular Mycorrhizal infection of Quercus rubra seedlings. New Phytologist, 151(1): 257-264.
Dodd, J.C. (2000). The role of arbuscular mycorrhizal fungi in natural ecosystems. Outlook on Agriculture, 29(1): 55-62.
Ellis, J.R., Lassen, H.J. and Boosalis, M.G. (1985). Drought resistance of wheat plants incubated with vesicular arbuscular mycorrhizae. Plant and Soil, 86: 369-378.
Epstein, E. (1972). Physiological genetics of plant nutrition. In Epstein E. (Ed.), Mineral Nutrition of Plants (pp 325-344), Principles and Prospectus, New York.
Feber, B.A., Zasoki, R.J., Burau, R.G. and Urio, K. (1990). Zinc uptake by corn as affected by vesicular arbuscular mycorrhizae. Plant and Soil, 129: 121-130.
Filion, M.M., St. Arnaud and Fortin, J.A. (1999). Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytologist, 141: 525-533.
Francis, R. and Read, D.J. (1995). Mutualism and antagonism in the mycorrhizal symbiosis with special reference to impacts on plant community structure. Can. J. Bot., 73:1301-1309.
Frank, A.B. (1885). Ueber die auf wurzelsymbiose beruhende Ernahrung gewisser Baume durcha Unterirdische pilze. Ber. Dtsch. Bot. Ges., 3: 128-145.
Friberg, S. (2001). Distribution and diversity of arbuscular mycorrhizal fungi in traditional agriculture on Niger Inland delta, Mali, West Africa. CBN Skriftserie. 3: 53-80.
Fridovich, I. (1975). Superoxide dimutase. Annu. Rev. Biochem., pp: 44:147-159.
Gallaud, I. (1905). Etudes surles mycorrhizes endophytes. Rev. Gen. Bot., 17: 5.
Garcia-Garrido, J.M., Ocampo, J.A. and Garcia-Romera, I. (2002). Enzymes in the arbuscular mycorrhizal symbiosis. In: R. Burns and R. Dick, (Eds.), Enzymes in the environment: activity, ecology and application (pp 125-151), Marcel Dekker, New York.
Gaur, A. and Adholeya, A. (2004). Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Sci., 86: 528-534.
Gavito, M.E and Miller, M.H. (1998). Early phosphorus nutrition, mycorrhizae development, dry matter partitioning and yield of maize. Plant and Soil, 199:177–186.
Gerdemann, J.W. (1975). Vesicular-arbuscular mycorrhizae. In: Torrey, J.G. and Clarkson, D.T. (Eds.), The Development and Function of Roots (pp 575-591), Academic Press, London.
Gerdemann, J.W. and Trappe, J.M. (1974). Endogonaceae in the Pacific Northwest. Mycologia Mem., 5: 1-76.
Giller, K.E., Witter, E. and McGrath, S.P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agriculture soils: a review. Soil Biol. Biochem., 30: 1389-1414.
Giri B., Kapoor, K. and Mukerji, K.G. (2003). Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biol. Fert. Soils, 38: 170-175.
Graham, J.H. (2000). Assessing cost of arbuscular mycorrhizal symbiosis in agrosystems. In: G.K. Podila and D.D. Donds (Eds.), Current Advances in Mycorrhizae Research (pp 127- 140), APS Press, St Paul.
Graham, J.H. and Egel, D.S. (1988). Phytophthora root rot development on mycorrhizal and phosphorus fertilized on mycorrhizal Citrus under drought stress. New Phytologist, 105: 411-419.
Grant, C.A., Bittman, S., Montreal, M., Plenchette, C. and Morel, C. (2005). Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Can. J. Plant Sci., 85: 3-14.
Grant, C.A., Flaten, D.N., Tomasiewicz, D.J., Sheppard, S.C. (2001). The importance of early season phosphorus nutrition. Can. J. Plant Sci., 81: 211-224.
Guether, M., Balestrini, R., Hannah, M., He, J., Udvardi, M.K. and Bonfante, P. (2009). Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytologist, 182(1): 200-212.
Gupta, R. and Mukerji, K.G. (2001). Microbial technology. A.P.H. Publishing Crop, New Delhi. pp: 233.
Hampp, R., Mertz, A., Schaible, R., Schwaigerer, M. and Nehls, U. (2000). Distinction of Araucaria angustifolia seeds from different locations in Brazil by a specific DNA sequence, Trees, 14: 429-434.
Harely, J.L. and Smith, S.E. (1983). Mycorrhiza Symbiosis, Academic Press, London, pp : 483.
Harley, J.L. (1989). The significance of mycorrhiza. Mycol. Res., 92: 129-139.
Hawkins, H.J., A. Johansen and G. George (2000). Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant and Soil, 226: 275-285.
Hinsinger, P. (2001). Bioavailability of trace elements as related to root induced chemical changes in the rhizosphere. In: G.K. Gobran, W.W. Wenzel, E. Lombi (Eds.), Trace elements in the rhizosphere (pp 25-41), CRC Press LCC, Boca Raton Florida, USA.
Huang, R.S., Smith, W.K. and Yost, R.E. (1985). Influence of vesicular-arbuscular mycorrhizae on growth, water relation and leaf orientation in Leucaena leucocephala (Linn.) De wit. New Phytol., 99: 229-243.
Jha, D.K., Sharma, G.D. and Mishra, R.R. (1994). Ecology of Vesicular-Arbuscular Mycorrhiza. In: A.B. Prasad and R.S. Bilgrami (Eds.), Microbes and Environments (pp 199-208), Narendra Publishing House.
Johansson, J., Paul, L. and Finlay, R.D. (2004). Microbial interactions in the mycorhizosphere and their significance for sustainable agriculture. Microbial. Ecol., 18:1-13.
Johnson, D., Leake, J.R., Ostle, N., Ineson, P. and Read, D.J. (2002). In situ 13CO2 pulse-labelling of upland grasslands demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytologist, 153: 327-334.
Johnson, N.C., Tilman, D. and Wedin, D. (1992). Plant and soil control on mycorrhizal fungal communities. Ecology, 73: 2034-2042..
Karasawa, T.Y., Kasahara, M. and Takebe (2002). Differences in growth responses of maize to preceding cropping caused by fluctuation in the population of indigenous arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 34: 851- 857.
Kaur, M. and Mukerji, K.G. (1999). The application of vesicular arbuscular mycorrhizal fungi in afforestation. In: A. Singh and K.R. Aneja (Eds.), From Ethanomycology to Fungal Biotechnology (pp 213-224), Plenum Press, New York.
Kaye, J.W., Pfleger, F.L. and Stewart, E.L. (1984). Interactions of Glomus fasciculatum and Pythium ultimumon green house grown Poinsettia. Can. J. Botany, 62:1575-1579.
Kjoller, R. and Rosendahl, S. (2000). Effects of fungicides on arbuscular mycorrhizal fungi: differential responses in alkaline phosphatase activity of external and internal hyphae. Biol. Fert. Soil, 31: 361-365.
Kothamasi, D., Kuhad, R.C and Babu, C.R. (2001). Arbuscular mycorrhizae in plant survival strategies. International Society for Tropical Ecology, 42(1):1-13.
Kothari, S.K., Marschner, H. and Romheld, V. (1990). Direct and indirect effects of VA mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays L.) in a calcareous soil. New Phytol., 116: 637-645.
Kramer, U. (2005). Phytoremediation: novel approaches to cleaning up polluted soils. Current Opinion in Biotechnology, 16: 133-141.
Kumar, D.J.H.A., Shasha, G.D. and Mishra, R.R. (1992). Soil microbial population numbers and enzyme activities in relation to latitude and forest degradation. Soil Biol. Biochem., 24: 761-767.
Lendzemo, V.W. (2004). The tripartite interaction between sorghum, Striga hermonthica and arbuscular mycorrhizal fungi. Ph.D thesis, Wageningen University, Wageningen, The Netherlands.
Liao J.P., Lin, X.G., Cao, Z.H., Shi, Y.Q. and Wong, M.H. (2003). Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere, 50(6): 847-853.
Marschner, H. (1995). Mineral nutrition of higher plants, 2nd Edn. Academic Press, London.
McFarland, J., Ruess, R., Keilland, K., Pregitzer, K., Hendrick, R. and Allen, M. (2010). Cross-ecosystem comparisons of in situ plant uptake of amino acid-N and NH4 +. Ecosystems, 13:177–193.
Melin, E. (1923). Experimentelle Untersuchungen iiber die Konstitution und Okologie der Mykorrhizen von Pinus silvestris L. and Picea abies (L.) Karst. Mykol Untersuch, 2: 73-331.
Mellor, R.B. (1992). Is trehalose asymbiotic determinant in symbiosis between higher plants and microorganisms? Symbiosis, 12:113-129.
Miransari, M., Bahrami, H.A., Rejali, F. and Malakouti, M.J. (2008). Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biology and Biochemistry, 40(5):1197-1206.
Morton, J.B. and Benny, G.L. (2001). Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia, 93: 181-195.
Morton, J.B. and Benny, G.L. (1990). Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): New order, Glomales two new suborders Glomineae and Gigasporineae and two new families, Acaulosporaceae and Gigasporaceae with emendation of Glomaceaea. Mycotaxon, 37: 471-491.
Mosse, F.E. (1973). Advance in the study of vesiculararbuscular mycorrhizae. Ann. Rev. Phytopath., 72: 1125-1132.
Nelson, C.E. and Safir, G.R. (1982). The water relations of well watered mycorrhizal and non mycorrhizal onion plants. Journal Am. Soc. Mortc. Sci., 107: 271-276.
Nicolson, T.H. and Gerdemann, J.W. (1968). Mycorrhiza Endogone species. Mycologia, 60: 313-325.
Nicolson, T.H. (1967). Vesicular-arbuscular mycorrhizal: a universal plant symbiosis. Sci. Prog., (Oxford), 55:561.
O’ Conner, P.J., Smith, S.E. and Smith, E.A. (2002). Arbuscular mycorrhizas influence plant diversity and community structure in semi-arid herbland. New Phytol., 154(1): 209-218.
O’ Keefe, D.M. and Sylvia, D.M. (1992). Chronology and mechanism of phosphorus uptake by mycorrhizal sweet potato plants. New Phytol., 122: 651-659.
Osonubi, O., Mulongoy, K., Awotoye, O.O., Atayese, M.O. and Okali, D.V.V. (1991). Effect of Ectomycorrhizal and vesicular arbuscular mycorrhizal fungi on drought tolerance of four leguminous woody seedlings. Plant and soil, 136: 131-143.
Parish, R.W. (1968). Studies on senescing tobacco leaves disc with special reference to peroxidase. The effect of cutting and inhibition of nucleic acid and protein synthesis. Planta. 82:1-13.
Quilambo, O.A. (2000). Functioning of peanut (Arachis hypogaea L.) under nutrient deficiency and drought stress in relation to symbiotic associations. Ph.D thesis. University of Groningen, the Netherlands.Van Denderen B.V., Groningen. ISBN 903671284X.
Ramos-Zapata, J.A., Orellana, R. and Allen, E.B. (2006). Establishment of Desmoncus orthacanthos Martius (Arecaceae): Effect of inoculation with arbuscular mycorrhizae. Revista De Biologia Tropica, 54(1):65-72.
Rani, P., Aggarwal, A. and Mehrotra, R.S. (1998a). Establishment of nursery technology through Glomus mosseae, Rhizobium sp. and Trichoderma harzianum on better biomass yield of Prosopis cinararia Linn. National Academic Sciences, Allahabad, 68 (B), III and IV: 301-305.
Rani, P., Aggarwal, A. and Mehrotra, R.S. (1998b). Growth responses in Acacia nilotica inoculated with VAM fungi (Glomus fasciculatum), Rhizobium sp. and Trichoderma harzianum. J. Mycopath. Res., 36 (1): 13-16.
Rani, P., Aggarwal, A. and Mehrotra, R.S. (1999). Growth responses in Acacia nilotica inculated with VAM fungi (Glomus mosseae), Rhizobium sp. and Trichoderma harzianum. Indian Phytopath., 52 (2): 151-153.
Rani, P., Aggarwal, A. and Sharma, D. (2001). Improvement in biomass yield of Prosopis cineraria through VAM. Rhizobium sp. and Trichoderma harzianum. Adv. Plant Sci., 14(2): 593-596.
Read, D.L., Leake, J.R. and Langdale, A.R. (1989). The nitrogen nutrition of mycorrhizal fungi and their host plants. In: L. Boddy, R. Marchant and D.J. Read (Eds.), Nitrogen, Phosphorus and Sulphur Utilization by Fungi (pp181-204), Cambridge University Press, Cambridge.
Safir, G.R and Nelson, C.E. (1985). VA-mycorrhizas plant and fungal water relations, In: Proc 6th North. Am. Conf. on Mycorrhiza, (Eds.) R. Molina, Corvallis. 471.
Salamanca, C.P., Heera, M.A. and Barea, J.M. (1992). Mycorrhizal inoculation of micropropagated woody legumes used in revegetation programmes for desertified Mediterranean ecosystems. Agronomie, 12: 869-872.
Schenk, N.C. (1981). Can mycorrhizae control root diseases? Plant diseases, 65: 230-234.
Schußler, A., Schwarzott, D. and Walker, C. (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res., 105(12): 1413-1421.
Schultz, R.C., Colletti, J.P., Isenhart, T.M., Simkins, W.W., Mize, C.W. and Thompson, M.L. (1995). “Design and Placement of a Multi-species Riparian Buffer Strip System”, Agroforestry system, 29:1-16.
Smith, S.E and Read, D.J. (1997). Vesicular-arbuscular mycorrhizas. In: Mycorrhizal Symbiosis 2nd Edn., Academic Press, London. 9-160.
Socolow, R.H. (1999). Nitrogen management and the future of food: Lessons from the management of energy and carbon. Proceeding of the National Academy of Sciences USA 96: 6001-6008.
Sreenivasa, M.N. and Bagyaraj, D.J. (1989). Use of pesticide for mass production of vesicular-arbuscular mycorrhizal inoculum. Plant and Soil, 119: 127-132.
Subramanian, K.S. and Charest, C. (1999). Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well watered condition. Mycorrhiza, 9: 69-75.
Sylvia, D.M. and Williams, S.E. (1992). Vesicular-arbuscular mycorrhizae and environmental stress. In: R.G. Lindermann and G.J. Bethlenflavay (Eds.), Mycorrhizae in sustainable agriculture, American Society of Agronomy (pp 101-124), Madisn. Wisc. Special Publication No. 54.
Szaniszlo, P.J., Powell, P.E., Reid, C.P.P. and Cline, G.R. (1981). Production of hydroxamate siderophore iron chelators by Ectomycorrhizal fungi. Mycologia, 73: 1158-117.
Thaxter, R. (1922). A revision of the Endogoneae. Proc. Am. Acad. Arts Sci., 57: 292-348.
Tobar, R.M., Azcon, R. and Barea, J.M. (1994). Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under waterstressed conditions. New Phytologist, 126: 119-122.
Trappe, J.M. and Schenck, N.C. (1982). Taxonomy of the fungi endomycorrhizae. A. Vesicular arbuscular mycorrhizal fungi (Endogonsles). In: N.C. Schenck (Ed.), Methods and principles of mycorhizal research (pp 1-10), St. Paul, Minn., American Phytopathological Society.
Trappe, J.M., Molina, R. and Castellano, M. (1984). Reactions of mycorrhizal fungi and mycorrhiza formation to pesticides. Ann. Rev. Phytopath., 22: 331-359.
Van der Heijden, M.G.A, Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf- Engel, R. Boller, Weimken, T.A. and Sanders, I.R. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396: 69-72.
Walker, C. (1987). Current concepts in the taxonomy of the Endogonaceae. Procedings of the 7th NACOM. IFAS, University of Florida, Gainesville, Fla.
Wang, M.Y., Xiai, R.X., Wu, Q.S., Liu, I.H. and Hu, L.M. (2007). Influence of arbuscular mycorrhizal fungi on microbes and enzymes of soils from different cultivated densities of red clover. Annals of Microbiology, 57(1):1-7.
Wen, C.L. (1991). Effect of temperature and Glomus sp on the growth and cut flower quality of micropropagated Gerbera jamesoni. M. S. thesis, National Taiwan University, Taiwan.
Wen, C.L. and Chang, D.C.N. (1995). Effects of temperature and Glomus sp. on the cut flower quality of micropropagated Gerbera jamesoni. Memories of the College of Agriculture, National Taiwan University, 35:75-91.
Wilcox, H. (1991). Mycorrhizae. In: Y. Waisel, A. Eshel and U. Kafkati (Eds.), The Plant Root: The Hidden Half (pp 731-765),Marcel Dekker, New York.
Yadav, K., Singh, N. and Aggarwal, A. (2011). Influence of arbuscular mycorrhiza (AM) fungi on survival and development of micropropagated Acorus calamus L. during acclimatization. Journal of Agricultural Technology, 7(3): 775-781.
Zhao, M., Li, M., and Liu, R.J. (2010). Effect of arbuscular mycorrhizae on microbial population and enzyme activity in explant soil used for watermelon production. International Journal of Engineering, Sciences and Technology, 2(7):17-22.
Section
Research Articles

How to Cite

Role of arbuscular mycorrhizal fungi (AMF) in global sustainable development. (2011). Journal of Applied and Natural Science, 3(2), 340-351. https://doi.org/10.31018/jans.v3i2.211