Production and characterization of antimicrobials from isolate Pantoea agglomerans of Medicago sativa plant rhizosphere soil
Article Main
Abstract
Due to rise in drug resistance among pathogens, there is always an urge to look for new drug alternatives. So in this study we aimed to identify the unexplored rhizosphere microflora of alfalfa plant for new antimicrobials. With initial screening for isolates from rhizosphere region for antibacterial activity against selected bacterial pathogens, the isolate AL10 had better activity selected for this study. The isolate mass was cultured and secondary metabolites were extracted using ethyl acetate and subjected to FTIR and GC-MS analysis. Based on functional diversity analysis, the isolate subjected to anti-bacterial activity revealed significant activity against Streptococcus pneumonia, Klebsiella, S. aureus with zone of inhibition in the range of18-20 mm. Based on GC-MS analysis report ten compounds were identified and 1-Octadecane and 1-nonadecanol were found to be responsible for bio-activity. FT-IR results showed that N-H stretching functional group was dominantly present in the extract. Molecular identification of the isolate by 16S rRNA sequencing showed the isolate as Pantoea agglomerans. The results showed that the isolate P.agglomerans, gram negative bacteria had wide antibacterial activity due to 1-Octadecane and 1-nonadecanol. Though Alfalfa plant has been described for various biological activities, this is a first report on rhizosphere region of plant reporting for antibacterial potential microbes.
Article Details
Article Details
Alfalfa plant, antibacterial activity, Pantoea agglomerans, gas chromatography-mass spectrometry, rhizosphere
Bialy, Z., Jurzysta, M., Oleszek, W., Piacente, S. and Pizza, C. (1999). Saponins in alfalfa (Medicago sativa L.) root and their structural elucidation. J Agr Food Che., 47: 3185–3192.
Bora, K.S. and Anupam Sharma (2011). Phytochemical and pharmacological potential of Medicago sativa: A review. Pharma Biol., 49(2): 211-220. https://doi.org/10.3109/13880209.2010.504732
Braun-Kiewnick, A., Jacobsen, B.J. and Sands, D.C. (2000). Biological Control of Pseudomonas syringaepv. syringae, the causal agent of basal kernel blight of barley, by antagonistic Pantoea agglomerans. Phytopathol., 90: 368-375. doi: 10.1094/PHYTO.2000.90.4.368.
Buyukcama, A.,Tuncer, O., Gür, D., Sancak, B., Ceyhana, M. and Cengiz, A.B. (2017). Clinical and microbiological characteristics of Pantoeaagglomeransinfection in children. J Infect Public Health., 783: 1-6. https://doi.org/10.1016/j.jiph.2017.07.020
Dalli, A.K., Saha, G. and Chakraborty, U. (2007). Characterization of Antimicrobial compounds from a common fern, Pterin biaurita. Indian J Exp Biol., 5: 285-290.
El-Khrisy, E.A.M., Abdel Hafez, O.M., Khattab, A.A. and Ahmed, K.M. (1994). Chemical constituents of Medicago sativa L. Bull Nat Res Cent., 19: 117–122.
Farris, M. H. & Olson, J. B. (2007). Detection of Actinobacteria cultivated from environmental samples reveals bias in universal primers. Lett Appl Microbiol., 45: 376–381.
Feng, Y., Shen, D. and Song, W. (2006). Rice endophyte Pantoeaagglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol., 100: 938-945. doi:10.1111/j.1365-2672.2006.02843.x
Frame, J. (2005). Medicago sativa L. Grassland Index. A searchable catalogue of grass and forage legumes. FAO, Rome, Italy
Guo, L., Wu, J.Z., Han, T., Cao, T., Rahman, K. and Qin, L.P. (2008). Chemical composition, antifungal and antitumor properties of ether extracts of ScapaniaverrucosaHeeg. and its endophytic fungus Chaetomium fusiforme. Molecules, 13(9): 2114–2125. https://dx.doi.org/10.3390%2Fmolecules13092114
Jayapradha, R., Murugesh, S. and Mahesh, N. (2009).Streptomyces sp. SCBT isolated from rhizosphere soil of medicinal plants is antagonistic to pathogenic bacteria. Iran J Biotechnol., 7(2):75-81.
Khalimi, K., Suprapta, D.N. and Nitta, Y. (2012). Effect of Pantoeaagglomerans on growth promotion and yield of rice. Agric Sci Res J., 2: 240-249.
Krakowska, A., Ska, K.R., Walczak, J., Kowalkowski, T., andBuszewsk, B. (2017). Comparison of Various Extraction Techniques of Medicago sativa: Yield, Antioxidant Activity, and Content of Phytochemical Constituents. J AOAC International., 100(6): 1681-93. https://doi.org/10.5740/jaoacint.17-0234
Kulkarni, G.B., Nayak, A.S., Sajjan, S.S., Oblesha, A. andKaregoudar, T.B. (2013). Indole-3-acetic acid biosynthetic pathway and aromatic amino acid aminotransferase activities in Pantoeadispersa strain GPK. Lett Appl Microbiol. 56: 340-347. https://doi.org/10.1111/lam.12053
Malboobi, M.A., Behbahani, M., Madani, H., Owlia, P., Deljou, A. andYakhchali, B. (2009).Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J Microbiol Biotechnol. 25: 1479–1484. http://dx.doi.org/10.1007/s11274-009-0038-y
Mohammadi, M., Burbank, L. and Roper, M.C. (2012). Biological role of pigment production for the bacterial phytopathogen Pantoeastewartii subsp. stewartii. Appl Environ Microbiol., 78:6859-6865. DOI: 10.1128/AEM.01574-12
Nazemi, M., Khoshkhoo, Z., Motalebi, A. and Karim, H. (2010). Identification non polar component and antibacterial activities of Iophonlae vistylus from Persian Gulf. Int J Environ Sci Dev., 6(2): 92– 197.
Nisha M Nair, Kanthasamy, R, Mahesh R, Iruthaya Kalai Selvam S and Ramalakshmi S (2019). Identification of Antibacterial Compound from Bacillus horikoshii, isolated from rhizosphere region of Alfalfa plant. J App Sci., 19(2): 140-147. DOI: 10.3923/jas.2019.140.147.
Prakash, O., Nimonkar, Y., Vaishampayan, A., Mishra, M., Kumbhare, S. and Josef, N. (2015).Pantoeaintestinalis sp. nov., isolated from the human gut. Inter. J. Syst. Evol. Microbiol., 65: 3352–3358. https://dx.doi.org/10.1099/ijsem.0.000419
Rajalakshmi, S. and Mahesh, N. (2014). Production and Characterization of Bioactive Metabolites Isolated from Aspergillus terreus in Rhizosphere Soil of Medicinal Plants. Int.J.Curr.Microbiol.App.Sci., 3(6): 784-798.
Ryandini, D., Ocky, K.R. and Oedjijono. (2018). Isolate Actinomycetes SA32 Origin of SegaraAnakan Mangrove Rhizosphere and its Capability in Inhibiting Multi-Drugs Resistant Bacteria Growth. J MicrobBiochem Technol., 10(1): 1-7. DOI: 10.4172/1948-5948.1000386
Sergeeva, E., Hirkala, D.L.M. and Nelson, L.M. (2007). Production of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoeaagglomerans rhizosphere isolates. Plant Soil., 297: 1-13. https://doi.org/10.1007/s11104-007-9314-5
Silini-Cherif, H., Silini, A., Ghoul, M. and Yadav, S. (2012). Isolation and characterization of plant growth promoting traits of a rhizobacteria: Pantoeaagglomerans Ima2. Pak J Biol Sci., 15: 267-276. http://dx.doi.org/10.3923/pjbs.2012.267.276
Suen, G., Scott, J.J., Aylward, F.O., Adams, S.M., Tringe, S.G., Pinto-Tomás, A.A.(2010). An insect herbivore microbiome with high plant biomassdegrading capacity. PLoS Genet., 6(9): e1001129. https://doi.org/10.1371/journal.pgen.1001129
Verma, S.C., Ladha, J.K. and Tripathi, A.K. (2001). Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol., 91: 127-141. https://doi.org/10.1016/S0168-1656(01)00333-9
Viruel. E., Lucca, M.E. andSineriz, F. (2012). Plant growth promotion traits of phosphobacteria isolated from Puna, Argentina. Arch. Microbiol., 193: 489-496.
Walterson, A.M. and Stavrinides, J. (2015).Pantoea: insights into a highly versatile and diverse 915 genus within the Enterobacteriaceae. FEMS Microbiol Rev., 5(39): 968-984. https://doi.org/10.1093/femsre%2Ffuv027
Zhang, L., Zhang, D. and Feng, K. (2006). Inhibition of refined components of Medicago sativa polysaccharides to the activities of reverse transcriptase of HIV and protease of HIV. Zhongguo Shipin Xuebao, 6: 59–62.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)