Article Main

P.J. Prajesh Balaji Kannan S. Pazhanivelan K.P. Ragunath

Abstract

In order to monitor vegetation growth and development over the districts and land covers of Tamil Nadu, India during the crop growing season viz., Khairf and Rabi of 2017, Moderate Resolution Imaging Spectroradiometer (MODIS) derived surface reflectance product (MOD09A1) which is available at 500 m resolution and 8-day temporal period was used to derive a time series based Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) for monitoring and mapping terrestrial vegetation trend analysis which showed areas in Tamil Nadu having vegetation greening and vegetation browning. The regression slope values derived from the trend analysis was utilized and the NDVI and NDWI seasonal trend showed majority of area in Tamil Nadu falling under positive trend during the Kharif season (86.52 per cent for NDVI and 90.29 per cent for NDWI). While irrespective of land cover classes, NDVI and NDWI during Kharif season showed a greater positive trend (greening) with least negative trend (browning) for vegetation growth over the land covers whereas during Rabi season it was observed to have a mix of positive trend and negative trend over the land covers. This study was carried out to show that a systematic study can be done for understanding changes over the landscape through the use of high spatial resolution satellite dataset such as MODIS, which provides detailed spatial and temporal description at regional scale. While a trend analysis using regression slope values can be considered for demonstrating the spatial and temporal consistency on land and vegetation dynamics.

Article Details

Article Details

Keywords

NDVI, NDWI, Negative Trend, Positive Trend, Vegetation Greening/Browning

References
Chen, Y. N., Zilliacus, H., Li, W. H., Zhang, H. F., and Chen, Y. P. (2006). Ground-water level affects plant species diversity along the lower reaches of the Tarim River, Western China. Journal of Arid Environments. 66(2), 231-246. doi: http://dx.doi.org/ 10.1016/j.jaridenv.2005.11.009.
Cuomo, V., Lanfredi, M., Lasaponara, R., Macchiato, M. F., and Simoniello, T. (2001). Detection of interannual variation of vegetation in middle and southern Italy during 1985–1999 with 1 km NOAA AVHRR NDVI data. Journal of Geophysical Research: Atmospheres. 106(D16), 17863-17876. doi: http://dx.doi.org/10.1029/2001JD900166.
Dubovyk, O., Menz, G., and Khamzina, A. (2012). Trend analysis of MODIS time-series using different vegetation indices for monitoring of cropland degradation and abandonment in Central Asia. In Geoscience and Remote Sensing Symposium (IGARSS). 6589-6592. doi: http://dx.doi.org/10.1109/IGARSS.2012.6352089.
Fensholt, R., Rasmussen, K., Nielsen, T. T., and Mbow, C. (2009). Evaluation of earth observation based long term vegetation trends-Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sensing of Environment. 113(9):1886-1898. doi: http://dx.doi.org/10.1016/j.rse.2009.04.004.
Fu, Y. H., Piao, S., Op de Beeck, M., Cong, N., Zhao, H., Zhang, Y., Menzel, A., and Janssens, I. A. (2014). Recent spring phenology shifts in western Central Europe based on multiscale observations. Global ecology and biogeography.23 (11), 1255-1263.
Gandhi, G. M., Parthiban, S., Thummalu, N., and Christy, A. (2015). NDVI: vegetation change detection using remote sensing and GIS–a case study of Vellore District. Procedia Computer Science. 57, 1199-1210.
Gao, B. C. (1996). NDWI- A normalized difference water index for remote sensing of vegetation liquid water from space. Remote sensing of environment. 58(3), 257-266. doi: http://dx.doi.org/10.1016/S0034-4257(96)00067-3.
Gumma, M. K., Nelson, A., Thenkabail, P. S., and Singh, A. N. (2011). Mapping rice areas of South Asia using MODIS multitemporal data. Journal of applied remote sensing. 5(1), 053547. doi: http://dx.doi.org/10.1117/1.3619838.
Guo, X., Zhang, H., Wu, Z., Zhao, J., and Zhang, Z. (2017). Comparison and Evaluation of Annual NDVI Time Series in China Derived from the NOAA AVHRR LTDR and Terra MODIS MOD13C1 Products. Sensors. 17(6), 1298. doi: http://dx.doi.org/10.3390/s17061298.
Mao, D., Wang, Z., Luo, L., and Ren, C. (2012). Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China. International Journal of Applied Earth Observation and Geoinformation. 18, 528-536. doi: http://dx.doi.org/10.1016/j.jag.2011.10.007.
Milesi, C., Samanta, A., Hashimoto, H., Kumar, K. K., Ganguly, S., Thenkabail, P. S., Srivastava, A. N., Nemani R. R., and Myneni, R. B. (2010). Decadal variations in NDVI and food production in India. Remote Sensing. 2(3), 758-776. doi: http://dx.doi.org/10.3390/rs2030758.
Nathan, K. K. (1998). Droughts in Tamil Nadu: A qualitative and quantitative appraisal. Drought Network News (1994-2001). 10 (3), 62.
Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni B., and Running, S. W. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science. 300(5625), 1560-1563. doi: http://dx.doi.org/ 10.1126/science.1082750.
Piao, S., Fang, J., Zhou, L., Guo, Q., Henderson, M., Ji, W., Li Y., and Tao, S. (2003). Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. Journal of Geophysical Research: Atmospheres. 108(D14).
Ramesh, R., Nammalwar P., and Gowri, V. S., (2008). Database on coastal information of Tamilnadu. Report to Environmental Information System (ENVIS). Department of Environment, Government of Tamil Nadu.
Schucknecht, A., Erasmi, S., Niemeyer, I., and Matschullat, J. (2013). Assessing vegetation variability and trends in north-eastern Brazil using AVHRR and MODIS NDVI time series. European Journal of Remote Sensing. 46(1), 40-59. doi: http://dx.doi.org/10.5721/EuJRS20134603.
Thenkabail, P. S., Gamage M. S. D. N., and Smakhtin V. U. (2004). The Use of Remote Sensing Data for Drought Assessment and Monitoring in Southwest Asia. Research Report 85, 1-25.
Tong, X., Wang, K., Brandt, M., Yue, Y., Liao, C., and Fensholt, R. (2016). Assessing future vegetation trends and restoration prospects in the karst regions of southwest China. Remote Sensing. 8(5), 357. doi: http://dx.doi.org/10.3390/rs8050357.
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment. 8(2): 127-150. doi: http://dx.doi.org/10.1016/0034-4257(79)90013-0.
Vaani, N., and Porchelvan, P. (2017). Assessment of long term agricultural drought in Tamil Nadu, India using NDVI anomaly. Disaster Advances. 10(10):1-10
Wan, Z., Wang, P., and Li, X. (2004). Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA. International journal of remote sensing. 25(1), 61-72. doi: http://dx.doi.org/10.1080/0143116031000115328.
Zhang, L. Y., Liu, A. J., Xin, Q., Liu, D. F., and Gan, W. (2006). Trend and analysis of vegetation variation of typical rangeland in Inner Mongolia—a case study of typical rangeland of Xilinguole. Journal of Arid Land Resource Environment. 20(2), 185-190.
Zhao, Y., He, C., and Zhang, Q. (2012). Monitoring vegetation dynamics by coupling linear trend analysis with change vector analysis: a case study in the Xilingol steppe in northern China. International journal of remote sensing. 33(1), 287-308.
Zhou, L., Tucker, C. J., Kaufmann, R. K., Slayback, D., Shabanov, N. V., and Myneni, R. B. (2001). Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research: Atmospheres. 106(D17), 20069-20083. doi: http://dx.doi.org/10.1029/2000JD000115.
Section
Research Articles

How to Cite

Monitoring and mapping of seasonal vegetation trend in Tamil Nadu using NDVI and NDWI imagery. (2019). Journal of Applied and Natural Science, 11(1), 54-61. https://doi.org/10.31018/jans.v11i1.1964