Evaluation of genotoxicity of acetamiprid using PCR technique on mosquito genome
Article Main
Abstract
The present studies deal with the evaluation of the genotoxic potential of acetamiprid at LD40 on a mosquito Culex quinquefasciatus by adopting polymerase chain reaction technique (PCR). This technique was used for detecting DNA damage by amplifying ribosomal DNA internal transcribed spacer 2 (ITS 2) regions. The amplified products were sequenced and the results of treated and non-treated controls were compared using Clustal W software programme. The results were studied in the form of deletions, additions, transitions and transversions of the bases. The DNA band amplified from control stocks consisted of 444 bases while those from LD40 treated individuals were comprised of 448 bases. The total number of mutations caused in the treated stock was 230 out of which 84 were transitions, 117 transversions, 13 deletions and 16 additions. Thus, it was evident that acetamiprid has a potential to promote gene mutations in the individuals exposed to its semilethal doses.
Article Details
Article Details
Acetamiprid, PCR, ITS 2, Culex quinquefasciatus
Chaudhry, A. and Anand, P. K. (2004). Assessment of dominant lethal effects of chlorpyrifos (CPF) using mosquito genetics. Poll. Res., 23 (4) : 767-771.
Chaudhry, A. and Anand, P. K. (2005). Evaluation of the mutagenic potential of chlorpyrifos (CPF) using polytene chromosomes of Anopheles mosquito. J. Environ. Biol., 26(1): 145-150.
Chaudhry, A., Anand, P. K., Geeta, Singh, S. and Lovleen (2006). Ectopic pairing of the intercalary heterochromatin in the organophosphate pesticide treated mosquito chromosomes
(Culicidae: Diptera). Cytologia, 71(4): 431-437.
Clements, A. N. (1994). The Physiology of Mosquitoes. Mc Millan and Co., New York.
Elbert, A., Nauen, R. and Leicht, W. (1998). Imidacloprid, a novel chloronicotinyl insecticide: biological activity and agricultural importance. In: Insecticides with novel modes of action: mechanism and application. (Eds. I. Ishaaya and D. Degheele), Springer Verlag, Berlin, Heidelberg, pp. 50-74.
El Hassani, A. K., Dacher, M., Gary, V., Lambin, M., Gauthier, M., and Armengaud, C. (2008). Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch. Environ. Contam. Toxicol., 54: 653–661.
Evans, H. J. (1977). Molecular mechanism in the induction of chromosome aberrations. In: Progress in genetic toxicology. (Eds. D. Scott., B. A. Bridges. and F. H. Sobels), Elsevier/North Holland Biomedical Press, Amsterdam. pp. 205- 230.
Finney, D. J. (1971). Probit analysis: A statistical treatment of the sigmoid response curve (2nd ed.). University Press, Cambridge, pp. 210-225.
Gaulden, M. E. and Liang, J. C. (1982) Insect cells for testing clastogenic agents. In: Cytogenetic Assays of Environmental Mutagens. (Ed. T. C. Hsu), Allanheld, Osmum, pp. 107-135.
Jones, C. and Kortenkamp, A. (2000). RAPD library fingerprinting of bacterial and human DNA: applications in mutation detection. Teratogen. Carcinogen. Mutagen, 20: 49-63.
Kagabu, S. (1997). Chloronicotinyl insecticides – discovery, application and future perspective. Rev. Toxicol., 1: 75-129.
Kocaman, A. Y. and Topaktas, M. (2007). In vitro evaluation of the genotoxicity of acetamiprid in human peripheral blood lymphocytes. Environ. Mol. Mutagen, 48: 483-490.
Kocaman, A.Y. and Topaktas M. (2009). The in vitro genotoxic effects of a commercial formulation of á-cypermethrin in human peripheral blood lymphocytes. Environ. Mol. Mutagen, 50: 27-36.
Krishnan K.S. (1964). A note on colonization of Culex. Bull Wid Hilt ORG.31:455-456
McKelvey, U. J., Green, M. H., Schmezer, P., Pool- Zobet, B. L., De Meo, M. P. and Collins, A. (1993). The single cell gel electrophoresis assay (comet assay): A European review. Mutat. Res., 288: 47- 63.
Mo, J., Pan, C., Zhang, S., He, H. and Cheng, J. (2005). Toxicity of acetamiprid to workers of Reticulitermes flaviceps (Isoptera: Rhinotermitidae), Copotermes formosanus (Isoptera: Rhinotermnitidae) and Odontotermes formosanus (Isoptera: Termitidae). J. Pestic. Sci., 30: 187–191.
Mo, J., Yang, T., Chenf, J and Song, X (2008). Lethal and sublethal effects of acetamiprid on the larvae of Culex pipiens Pallens. Insect Science, 9(3):45- 49.
OCDE (1998). Mammalian erythrocyte micronucleus test. No. 474. In: Addenum to OCDE Guidelines for Testing Chemicals. OCDE, France.
Pandrangi, R., Petras, M., Ralph, S., and Vrzoc. M. (1996). Alkaline single cell gel (comet assay) and genotoxicity monitoring using bullheads and carp. Environ. Mol. Mutagen, 26: 345- 356.
Phillips, D. H. (1997) Detection of DNA modifications by the super 32 P- postlabelling assay. Mutat. Res., 378: 550- 554.
Rust, M. K. and Saran, R. K. (2008). Toxicity, repellency, and effects of acetamiprid on western subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol., 101(4): 1360-1366.
Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular Cloning: A laboratory manual (2nd ed.). Cold Spring Harbor, New York.
Schmuck, R. (2001). Ecotoxicological profile of the insecticide thiacloprid. Pflanzenschutz Nachr Bayer, 54:161–184.
Singh, K. R. P., Patterson, R. S., La-Brecque, G. C. and Razdan, R. K. (1975). Mass raring of Culex pipiens fatigans. Weid. J. Com. Dis., 7: 31-53.
Sobels F.H. (1974). The advantages of Drosophilla for mutation studies. Mutat.Res., 26: 277-284.
U.S. Environmental Protection Agency (USEPA). (2002). Name of chemical: acetamiprid. Reason for issuance: conditional regis tration.(www.epa.gov/opprd001/factsheets /acetamiprid.pdf).
Yamamoto, I. and Casida, J. E. (1999). Nicotinoid insecticides and the nicotinic ac etylcholine receptor. Springer-Verlag: Tokyo.
Yassine, A., Adessalam, K., El Hassini, Vincent, G., Catherine, A., Michel, L. and Monoque, G. (2009). Subchronic exposure of honeybees to sublethal doses of pesticides: effects on behavior. Environ. Toxicol. Chem., 28(1): 113–122.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)