##plugins.themes.bootstrap3.article.main##

Vinay Singh Dagar Sarita Kumar

Abstract

Helicoverpa armigera, a global polyphagous pest, attacks a wide variety of crops causing huge agricultural loss. Overuse of conventional insecticides for Helicoverpa control has made Helicoverpa resistant to insecticides leading to more severe attacks on crops diverting interest of researchers to explore alternate control agents. Present study investigates the cidal and antifeedant potential of Emamectin benzoate; a semi-synthetic avermectin derived from the soil actinomycetes, Streptomyces avermitilis; against early IV instars of H. armigera. Larvae were fed on the castor leaf discs (3.5 cm diameter) dipped in different concentrations of Emamectin benzoate; ranging from 0.05 µg/mL-1.5 µg/mL. The leaf disc areas were measured pre-and post-larval feeding to estimate the antifeedant potential of compound. The effect of feeding was also assessed on the survival of larvae by scoring the larval mortality till 96 h. Our investigations showed significant larvicidal potential of Emamectin benzoate against H. armigera revealing respective LC50 values of 0.26 µg/mL, 0.095 µg/mL, 0.043 µg/mL and 0.027 µg/mL after 24, 48, 72 and 96 h feeding. Furthermore, a remarkable decrease of 93.59% was observed in larval feeding potential indicating significant antifeedant efficacy of Emamectin benzoate. A strong correlation between antifeedant index and the Emamectin benzoate concentration resulted in 1.48-fold index reduction with a decrease in concentration. Our results demonstrated efficacy of Emamectin benzoate as an effectual larvicidal and antifeedant agent against H. armigera. Employing selective insecticide can tackle issues of pest resistance and pest resurgence after ascertaining in the fields as Helicoverpa control agent and negating impact on non-target organisms. 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Antifeedant, Emamectin benzoate, Helicoverpa armigera, Larvicidal, Leaf dip assay

References
Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18(2): 265-267.
Ahmad, M. (2007). Insecticide resistance mechanisms and their management in Helicoverpa armigera (Hübner)–A review. J. Agric. Res. 45(4): 319-335.
Argentine, J.A., Jansson, R.K., Halliday, W.R., Rugg, D. and Jany, C.S. (2002). Potency, spectrum and residual activity of four new insecticides under glass house conditions. Fla. Entomol. 85: 552-562.
Arivoli, S. and Tennyson, S. (2013). Antifeedant activity, developmental indices and morphogenetic variations of plant extracts against Spodoptera litura (Fab) (Lepidoptera: Noctuidae). J. Entomol. Zool. Stud. 1(4): 87-96.
Avilla, C. and González-Zamora, J. E. (2010). Monitoring resistance of Helicoverpa armigera to different insecticides used in cotton in Spain. Crop Prot. 29(1): 100-103.
Balaraju, K., Vendan, S. E., Ignacimuthu, S. and Park, K. (2011). Antifeedant and larvicidal activities of Swertia chirata Buch-Ham. ex Wall. against Helicoverpa armigera Hübner and Spodoptera litura Fab. Elix Soc. Sci. 31: 1902-1905.
Birah, A., Mahapatro, G. and Gupta, G. (2008). Toxicity evaluation of Emamectin Benzoate against tobacco caterpillar (Spodoptera litura) by three different assay techniques. Ind. J. Entomol. 70(3): 200-205.
Burg, R. W., Miller, B. M., Baker, E. E., Birnbaum, J., Currie, S. A., Hartman, R., Yu-Lin Kong, Monaghan, R. L., Olson, G., Putter, I., Tunac, J. B., Wallick, H., Stapley, E. O., Oiwa, R. and Omura, S. (1979). Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob. Agents Chemother. 15: 361-367.
Carneiro, E., Silva, L. B., Maggioni, K., dos Santos, V. B., Rodrigues, T. F., Reis, S. S. and Pavan, B. E. (2014). Evaluation of insecticides targeting control of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Am. J. Plant Sci. 5(18): 2823.
Dhadialla, T. S., Carlson, G. R. and Le, D. P. (1998). New insecticides with ecdysteroidal and juvenile hormone activity. Annu. Rev. Entomol. 43(1): 545-569.
Dunbar, D.M., Lawson, D.S., White, S.M., Ngo, N., Dugger, P. and Richter, D. (1998). Emamectin benzoate: Control of the heliothine complex and impact on beneficial arthropods. Proceedings Beltwide Cotton Conferences, pp. 1116 -1118.
El-Sheikh, A. and El-Sayed (2015). Comparative toxicity and sublethal effects of emamectin benzoate, lufenuron and spinosad on Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae). Crop Prot. 67: 228-234.
Fanigliulo, A. and Sacchetti, M. (2012). Emamectin benzoate: new insecticide against Helicoverpa armigera. Commun. Agric. Appl. Biol. Sci. 73(3): 651-653.
Finney, D. J. (1971). Probit Analysis, third ed. Cambridge University Press, London, UK, pp 383.
Firake, D.M. and Pande, R. (2009). Relative toxicity of Proclaim 5% SG (Emamectin benzoate) and Dipel 8L (Bacillus thuringiensis var Kurstaki) against Spodoptera littoralis by leaf roll method. Curr. Biot. 3: 445-449.
Forrester, N. W., Cahill, M., Bird, L. J. and Layland, L. K. (1993). Management of pyrethroid and endosulfan resistance in Helicoverpa armigera. Bull. Entomol. Res. 1:1 - 132.
Grafton-Cardwell, E., Godfrey, L., Chaney, W. and Bentley, W. (2005). Various novel insecticides are less toxic to humans, more specific to key pests. Calif. Agric. 59(1): 29-34.
Gunning, R. V., Moores, G. D., and Devonshire, A. L. (1998). Insensitive acetylcholinesterase causes resistance to organophosphates in Australian Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pest Manag. Sci. 54(3): 319-320.
Ignacimuthu, S. and Jayaraj, S. (2003). Ecofriendly approaches for sustainable pest management. Current Sci. 84: 10-25.
Ishaaya, I., Kontsedalov, S. and Horowitz, A. R. (2002). Emamectin, a novel insecticide for controlling field crop pests. Pest Manag. Sci. 58(11): 1091-1095.
Ishtiaq, M., Saleem, M. A. and Razaq, M. (2012). Monitoring of resistance in Spodoptera exigua (Lepidoptera: Noctuidae) from four districts of the Southern Punjab, Pakistan to four conventional and six new chemistry insecticides. Crop Prot. 33: 13-20.
Isman, B., Koul, O., Lucyzynski, A. and Kaminski, J. (1990). Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. J. Agric. Food Chem. 38: 1407-1411.
Jansson, R.K. and Dybas, R.A. (1996). Avermectins, biochemical mode of action, biological activity, and agricultural importance. In: Ishaaya, I. (Ed.), Insecticides with Novel Modes of Action: Mechanism and Application. Springer, New York.
Jansson, R. K., Brown, R., Cartwright, B., Cox, D., Dunbar, D. M., Dybas, R. A., Eckel, C., Lasota, J.A., Mookerjee, P.K., Norton, J.A. and Peterson, R. F. (1997a). Emamectin benzoate: a novel avermectin derivative for control of lepidopterous pests. In Proceedings of the 3rd International Workshop on Management of Diamondback Moth and Other Crucifer Pests. MARDI, Kuala Lumpur, Malaysia.
Jansson, R. K., Ross, H. W. and Argentine, J. A. (1997b). Evaluation of miniature and high-volume bioassays for screening insecticides. J. Econ. Entomol. 90(6): 1500-1507.
Jeyasankar, R.N. and Ignacimuthu, S. (2010). Antifeedant and growth inhibitory activities of Syzygium lineare Wall (Myrtaceae) against Spodoptera litura Fab (Lepidoptera: Noctuidae). Current Res. J. Biol. Sci. 2: 173 - 177.
Kamaraj, C., Rahuman, A. and Bagavan, A. (2008). Screening for antifeedant and larvicidal activity of plant extracts against Helicoverpa armigera (Hübner), Sylepta derogata (F.) and Anopheles stephensi (Liston). Parasitol. Res. 103: 1361 - 1368.
Karaagaç, S. U., Konus, M. and Büyük, M. (2013). Determination of susceptibility levels of Helicoverpa armigera (Hübner) (Noctuidae: Lepidoptera) strains collected from different regions to some insecticides in Turkey. J. Entomol. Res. Soc. 15(1): 37.
Khaliq, A., Farooq, U., Abbas, H. T. and Ahmad, M. H. (2014). Toxic prospective of some novel chemistry insecticides for resistance echelon in two foremost lepidopterous insect pests. Int. J. Mod. Agric .3:116-122.
Korrat, E. E. E., Abdelmonem, A. E., Helalia, A. A. R. and Khalifa, H. M. S. (2012). Toxicological study of some conventional and nonconventional insecticides and their mixtures against cotton leaf worm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctudae). Ann. Agric. Sci. 57(2): 145-152.
Lammers, J. W. and Macleod, A. (2007). Report of a pest risk analysis: Helicoverpa armigera (Hübner, 1808). European Union. Retrieved October, 8 2017 from https://secure.fera. defra.gov.uk/phiw/riskRegister/plant health/ documents/helicoverpa.pdf.
Li, X., Schuler, M. A. and Berenbaum, M. R. (2007). Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52: 231-253.
Mishra, M., Gupta, K. K. and Kumar, S. (2015). Impact of the stem extract of Thevetia neriifolia on the feeding potential and histological architecture of the midgut epithelial tissue of early fourth instars of Helicoverpa armigera (Hübner). Int. J. Insect Sci. 7: 53.
Mrozik, H. (1994). Advances in research and development of avermectins. In: Natural and Engineered Pest Management Agents, American Chemical Society Symposium Series No. 551. (ed. P. A. Hedin et al.) American Chemical Society, Washington. pp 54–73.
Muthusamy, B., Arumugam, E., Kasinathan I.D., Thangarasu, M., Kaliyamoorthy, K. and Kuppusamy, E. (2015). Bioefficacy of Caesalpinia bonducella extracts against tobacco cutworm, Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae). J. Coastal Life Med. 3(5): 382-388.
Nikam, T. A., Chandele, A. G. and Nikita, S. A. (2015). Relative Toxicity of some newer insecticides to Diamondback Moth, Plutella xylostella Linnaeus. The Ecoscan, 8: 105-108.
Parsaeyan, E., Saber, M. and Bagheri, M. (2013). Toxicity of Emamectin benzoate and Cypermethrin on biological parameters of cotton bollworm, Helicoverpa armigera (Hübner) in laboratory conditions. J. Crop Prot. 2(4): 477-485.
Payne, G., Hasty, M. and Meara, C.O. (1999). Susceptibility of field collected populations of tobacco budworm and cotton bollworm to various insecticides. In: Proceedings of the Beltwide Cotton Conference. National Cotton Council, Orlando, FL. pp 1778-1780.
Ramya, S. (2008). Antifeedant activity of leaf aqueous extracts of selected medicinal plants on VI instar larva of Helicoverpa armigera (Hübner). Ethnobot. Leaflets. 2008(1): 127.
Ramya S, and Jayakumararaj R. (2009). Antifeedant activity of selected ethno-botanicals used by tribals of Vattal Hills on Helicoverpa armigera (Hübner). J. Pharm. Res., 2:1414–1418.
Rashwan, M. H., Soltani, H., Mousavi, M., Amirtaimouri, R., Attri, P. K., Ndehedehe, C., Ekpa, A., Simeon, O., Nse, O., Onuigbo, A.C. and Madu, I.A. (2013). Impact of certain novel insecticides on food utilization ingestion and larval growth of the cotton Leafworm Spodoptera littoralis (Boisd.). People, 11: p.13.
Saeed, Q., Saleem, M.A. and Ahmad, M. (2012). Toxicity of some commonly used synthetic insecticides against Spodoptera exigua (Fab) (Lepidoptera: Noctuidae). Pak. J. Zool. 44: 1197-1201.
Schlechtriem, C., Fliedner, A. and Schäfers, C. (2012). Determination of lipid content in fish samples from bioaccumulation studies: contributions to the revision of guideline OECD 305. Environ. Sci. Eur. 24(1): 13.
Selvam, K and Ramakrishnan, N. (2014). Antifeedant and ovicidal activity of Tinospora cardifolia wild (Menispermaceae) against Spodoptera litura (Fab.) and Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae). Int. J. Recent Sci. Res. 5(10): 1955-1959.
Sharma, H. C. (2001). Cotton bollworm/legume pod borer, Helicoverpa armigera (Hübner) (Noctuidae: Lepidoptera): biology and management. Crop Prot. Compend. 72.
Singh, T., Satyanarayana, J. and Peshin, R. (2014). Crop loss assessment in India- Past experiences and future strategies. Integrated Pest Management. Springer, Dordrecht, pp. 227-243.
Singh, A. K. and Rembold, H. (1992). Maintenance of the cotton bollworm, Heliothis armigera Hübner (Lepidoptera: Noctuidae) in laboratory culture—I. Rearing on semi-synthetic diet. Int. J. Trop. Insect Sci. 13(3): 333-338.
Smagghe, G., Pineda, S., Carton, B., Estal, P. D., Budia, F. and Viñuela, E. (2003). Toxicity and kinetics of methoxyfenozide in greenhouse?selected Spodoptera exigua (Lepidoptera: Noctuidae). Pest Manag. Sci. 59(11): 1203-1209.
Temple, J. H., Pommireddy, P. L., Cook, D. R., Marçon, P. and Leonard, B. R. (2009). Susceptibility of selected lepidopteran pests to rynaxypyr®, a novel insecticide. J. Cotton Sci. 13(1): 23-31.
Thakur, N., Shylesha A. and Rao, R. (2006). Major insect pests of agri-horticultural crops and their management in north eastern hill region. In: Dwivedi, S. (Ed.), Integrated Pest Management and Biocontrol 1st ed. Pointer Publ. Pvt. Ltd., New Delhi, pp 196-199.
Thompson, G. D., Dutton, R. and Sparks, T. C. (2000). Spinosad–a case study: An example from a natural products discovery program. Pest Manag. Sci. 56(8): 696-702.
Vargus, A.P.T., Garza-Urbina, E., Blanco-Montero, C.A., Perez-Carmona, G. and Pellegaud-Rabago, J.M. (1997). Efficacy of new insecticides to control beet armyworm in north eastern Mexico. Proceedings of the Beltwide Cotton Conference of the National Cotton Council. New Orleans, Louisiana. pp. 1030-1031.
Wang, D., Qiu, X, Ren, X., Niu, F. and Wang, K. (2009). Resistance selection and biochemical characterization of spinosad resistance in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pest Biochem. Physiol. 95(2): 90-94.
Wheeler, D. A. and Isman, M. B. (2001). Antifeedant and toxic activity of Trichilia americana extract against the larvae of Spodoptera litura. Entomol. Exp. Appl. 98(1): 9 - 16.
Wise, J. C., Jenkins, P. E., Poppen, R. V. and Isaacs, R. (2010). Activity of broad-spectrum and reduced-risk insecticides on various life stages of cranberry fruitworm (Lepidoptera: Pyralidae) in highbush blueberry. J. Econ. Entomol. 103(5): 1720-1728.
Yang, Y., Li, Y. and Wu, Y. (2013). Current status of insecticide resistance in Helicoverpa armigera after 15 years of Bt cotton planting in China. J. Econ. Entomol. 106(1): 375 - 381.
Section
Research Articles

How to Cite

Emamectin benzoate: Potential larvicide and antifeedant agent against cotton Boll worm Helicoverpa armigera (Lepidoptera: Noctuidae). (2018). Journal of Applied and Natural Science, 10(2), 564-571. https://doi.org/10.31018/jans.v10i2.1738