##plugins.themes.bootstrap3.article.main##

B. L. Dinesha Udaykumar Nidoni C. T. Ramachandra Nagaraj Naik K.B. Sankalpa

Abstract

The effect of three different extraction methods, namely supercritical CO2, soxhlet and solvent methods on the yield, efficiency, physico-chemical properties, nutritional, anti-nutritional composition, antimicrobial and antioxidant activities of moringa (Moringa oleifera Lam.) seed kernel oil was investigated in this study. Oil extraction for SC-CO2 were 37.76 g/100g and 98.43%, observed to be higher than those of soxhlet extraction (29.12 g/100g and 76.29%), and significantly lower than solvent extraction (22.12 g/100g and 57.99%). The physico-chemical composition of the oils showed considerable variation among the extraction methods. The SC-CO2 extracted oil was found to be of superior quality, showing negligible thermal degradation and exhibited significantly (p<0.01) higher nutritional and antioxidant activity and lower anti-nutritional composition than the soxhlet and solvent extracted oils. Oils produced by SC-CO2 and soxhlet extraction methods had antimicrobial activities higher than solvent extracted oil. SCCO2 extracted oil was found to have maximum number of bioactive compounds (14 compounds) followed by solvent (8 compounds) and soxhlet (4 compounds) extracted oil. The results of the study demonstrated that SC-CO2 would be a promising process for the extraction of moringa seed kernel oil of premium quality.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Bioactive compounds, Essential oil, Extraction, Moringa seeds, SC-CO2

References
Abalaka, M.E., Daniyan, S.Y., Oyeleke1, S.B. and Adeyemo, S.O. (2012). The antibacterial evaluation of Moringa oleifera leaf extracts on selected bacterial pathogens. J. Microbiology Res. 2(2): 1-4.
Abdulkarim, S.M., Long, K., Lai, O.M., Muhammad, S.K.S. and Ghazali, H.M. (2005). Some physico-chemical properties of Moringa oleifera seed oil extracted using solvent and aqueous enzymatic methods. J. Food Chem. 93(1): 253-263.
Abdulkarim, S.M., Long, K., Lai, O.M., Muhammad, S.K.S. and Ghazali, H.M. (2009). Physico-chemical properties of Moringa oleifera seed oil extracted using solvent and aqueous enzymatic methods. J. Food. Chem. 98(1): 135-146.
Adejumo, B.A. and Abayomi, D. A. (2012). Effect of moisture content on some physical properties of Moringa oleifera seed. J. Agric. Veterinary. Sci. 1(5): 12-21.
Adejumo, B.A., Alakowe, A.T and Obi, D.E. (2013). Effect of heat treatment on the characteristics and oil yield of Moringa oleifera seeds. Int. J. Eng. Sci. 2 (1): 232-239.
Adesugen, S.A., Elechi, N.A and Coker, H.A.B. (2008). Antioxidants activity of methanolic extract of Sapium elliticum. Pak. J. Biol. Sci. 11: 453-457.
Ali, N. (1991). Applications of solvent extraction: a summary. Buletin FKKKSA. 5: 40-46.
Anhwange, B.A., Ajibola, V.O. and Oniye, S.J. (2004). Chemical studies of the seeds of Moringa oleifera (Lam) and detarium microcarpum (Guill and Sperr). J. Biol. Sci. 4(2): 711-715.
Anwar, F., Syeda, N.Z and Umer, R. (2006). Characterization of Moringa oleifera seed oil from drought and irrigated regions of Punjab, Pakistan. Pak. J. Nutrition. 57 (20): 160-168.
AOAC. (1990), Official methods of analysis of the Association of Official Analytical Chemists. 14th Ed, Arlington.
Asokkumar, K.M., Maheswari, A.T., Sivashanmugam, V., Devi, S.N., Subhashini and Ravi, T.K. (2009). Free radical scavenging and antioxidant activity of Glinus oppositifolius (carpet weed) using different in-vitro assay systems. J. Pharmaceut. Biol. 47(1): 474-482.
Bauer, A.W., Kibry, W.M., Sherris, M. and Turk, M. (1996). Antibiotic suceptibality testing by a standardized single disc method. Am. J. Clin. Pathol. 45(1): 493-496.
Belewu, M.A., Adekola, F.A., Adebayo, G.B., Ameen, O.M., Muhammed, N.O., Olaniyan, A.M., Adekola, O.F. and Musa, A.K. (2010). Physico-chemical characteristics of oil and bio-diesel from Nigerian and Indian Jatropha curcas seeds. Int. J. Bio. Chem. Sci. 4(2): 524 – 529.
Bhatnagar, A.S. and Krishna, A.G. (2013). Natural antioxidants of the Jaffna variety of Moringa Oleifera seed oil of Indian origin as compared to other vegetable oils. J. Gresaa aceites. 64 (5): 537-545.
Bukar, A., Uba, A. and Oyeyi, T.I. (2010). Antimicrobial profile of Moringa oleifera extracts against some food borne microorganisms. Bayero J. Pure Applied Sci. 3(1): 43-48.
Cakir, A., Kordali, S., Zengin, H., Izumi, S. H. and Hirata, T. (2004). Composition and antifungal activity of essential oils isolated from Hypericum hussopifolium and H. heterrophyllum. J. Flavour Frag. 19(1): 62-68.
Cho, Y.S., Lee, Y.S. and Rhee, C. (2010). Edible oxygen barrier bilayer film pouches from corn zein and soy protein isolate for olive oil packaging. J. Food Sci. Technol. 43 (4): 1234-1239.
Couto, R.M., Fernandes, J.M., Silva, D. and Simoes, P.C. (2009). Supercritical fluid extraction of lipids from spent coffee grounds. J. Supercrit. Fluids. 51(1): 159-166.
Da Porto, C., Decorti, D. and Kikic, I. (2009). Flavour compounds of Lavandula angustifolia L. to use in food manufacturing: comparison of three different extraction methods. Food Chem. 112_ 1072-1078.
Danh, L.T., Wijngaardena, C., Mammucaria, R., Cox, J. and Foster, N.R. (2011). Comparison of rosemary extraction by supercritical carbon dioxide and hydrodistillation. Int. Conference on Process Intensification for Sustainable Chemical Industries. Beijing, China, 27–28.
Dauqan, E., Sani, H.A., Abdullah, A., Muhamad, H. and Top, A.G.M., (2011a). Vitamin E and Beta carotene composition in four different vegetable oils. Am. J. Appl. Sci. 8 (5): 407-412.
Dauqan, E.M.A., Sani, H.A., Abdullah, A. and Kasim, Z.M., (2011b). Fatty acids composition of four different vegetable oils (Red palm olein, Palm olein, Corn oil and Coconut oil) by gas chromatography. 2nd Int. Conf. on Chemistry and Chemical Engg. IACSIT Press, Singapore.
Denny, E.F.K. (1988). Steam distillation of the subcutaneous essential oils. Flavours and fragrances: a word perspective. Amsterdam: Elsevier Science.
Enwa, F.O., Omojate, C.G. and Adonu, C.C. (2013). A review on the phytochemical profile and the antibacterial susceptibility pattern of some clinical isolates to the ethanolic leaves extract of Moringa oleifera. Int. J. Advanced Res. 1 (5): 226-238.
FAO/WHO. (2009). Report of the 21st session of the codex alimentarius committee on fats and oils. Kola Kinabalu, Malaysia. 16-20, February.
Inuwa, H.M., Aina, V.O., Gabi, B.I., Aimola and Toyin. (2011). A comparative determination of antinutritional factors in groundnut oil and palm oil. Advance J. Food Sci. Technol. 3(4): 275-279.
Jaffe, C.S. (2003). Analytical Chemistry of Food. Blackie Academic and Professional. New York, 1: 200.
Liza, M.S., Abdul, R.R., Mandana, B., Jinap, S., Rahmat A., Zaidul, I.S. M and Hamid, A. (2010). Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes crispus (Pecah Kaca). J. Food Bioprod. Process. 88: 319-326.
Lucas, G.M. and Markaka, P. (1975). Phytic acid and other phosphrous compounds of bean (Phaseolus vugaris). J. Agric. Ed. Chem. 23(2): 13-15.
Mahadkar, S., Valvi, S. and Jadhav, V. (2013). Gas chromatography mass spectroscopic analysis of some bioactive compounds from five medicinally relevant wild edible plants. Asian J. Pharma. Clinical. Res. l (6): 1-5.
Malapit, C.A. (2010). Report on the extraction of moringa oil from moringa oil seeds. J. Lipid. Sci. 1(1): 1-5.
Mani, S., Jaya, S. and Vadivambal, R. (2007). Optimization of solvent extraction of Moringa (Moringa oleifera) seed kernel oil using response surface methodology. J. Fd. Bioprod. Processing. 85(4): 328-335.
Mbah, B.O., Eme, P.E. and Ogbusu, O.F. (2012). Effect of cooking methods (Boiling and Roasting) on nutrients and anti-nutrients content of Moringa oleifera seeds. Pak. J. nutrition. 11(3): 211-215.
Middleton, E.J., Kandaswami, C. and Theoharides. (2000). The effects of pant flavonoids on mammalian cell: Implications for inflammation heart disease cancer. J. Pharmacol. Rev. 52(1): 673-751.
Nabasree, D. and Bratati, D. (2007). Antioxidant activities of some leafy vegetables of India-A comparative study. J. Food Chem. 101(3): 471-474.
Nguyen, H.N., Gaspillo, P.D., Maridable, J.B., Malaluan, R.M., Hinode, H., Salim, C. and Huynh, H. K.P. (2011). Extraction of oil from Moringa oleifera kernels using supercritical carbon dioxide with ethanol for pretreatment: Optimization of the extraction process. J. Chem. Eng. Proc. 50(1): 1207-1213.
Nilani, P., Pinaka, K.M, Damodaran, P.D.B. and Jayaprakash, M.R. (2012). Anthelmintic activity of Moringa oleifera seed oil- validation of traditional use. J. Adv. Sci. Res. 3(2): 65-66.
Ogbunugafor, H.A., Eneh, F.U., Ozumba, A.N., Ezikpe, I., Okpuzor, J., Igwilo, I.O., Adenekan, S.O. and Onyekwelu, O.A. (2011). Physico-chemical and antioxidant properties of Moringa oleifera seed oil. Pak. J. Nutrition. 10(5): 409-414.
Olawale, S.A. (2012). Solid-liquid extraction of oils of African elemi’s (Canarium schweinfurthii’s) fruit. J. Agric. Eng Int. 14(2): 155-172.
Oliveira, D.A., Angonese, M. and Ferreira, S.R.S. (2013). Supercritical fluid extraction of passion fruit seeds and its processing residue (cake). III Iberoamerican Conference on Supercritical Fluids Cartagena de Indias (Colombia). 12-22.
Oluduro, B.I., Aderiye, J.D., Connolly, E.T., Akintayo, O and Famurew, A.D. (2010). Characterization and antimicrobial activity of 4-(α-D-Glucopyranosyl-1→4- α -L-rhamnopyranosyloxy)-benzyl thiocarboxamide; a Novel Bioactive Compound from Moringa oleifera seed extract. J. Folia Microbiol. 55 (5): 422-426.
Orhevba, B.A., Sunmonu, M.O. and Iwunze, H.I. (2013). Extraction and characterization of Moringa oleifera seed oil. J. Food. Dairy Technol. 1 (1): 125-138.
Palafox, J.O., Navarrete, A., Julio, C., Rivero, S., Atoche, C.R., Escoffie, P.A., Antonio, J. and Uribe, R. (2012). Extraction and characterization of oil from Moringa oleifera using supercritical CO2 and traditional solvents. Am. J. Anal. Chem. 3(1): 946-949.
Petukhov, I., Malcolmson, L.J., Przybylski, R. and Armstrong, L. (1999). Frying performance of genetically modified canola oils. J. Am. Oil chemist’s society. 76(1): 627-632.
Prabhu, K., Murugan, K., kumar, A., Ramasubramanian, N. and Bragadeeswaran, S. (2011). Larvicidal and repellent potential of Moringa oleifera against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). Asian Pacif. J. Trop. Biomed. 1(2): 124-129.
Pradhan, R.C.A., Meda, B.V., Rout, P.K.A., Naik, S.A., Ajay, K. and Dalai, C. (2010). Supercritical CO2 extraction of fatty oil from flaxseed and comparison with screw press expression and solvent extraction processes. J. Food Engg. 98(1): 393-397.
Premi, M. and Sharma, H. K. (2013). Oil extraction optimization and kinetics from Moringa oleifera (PKM 1) seeds. Int. J. Agric. Fd Sci. Technol. (4)4: 371-378.
Rahman, I.M.M., Nazimuddin, S.B.M., Zinnat, A.B., Rahma, M.A. and Hasegawa, H. (2012). Physicochemical properties of Moringa oleifera Lam. seed oil of the indigenous-cultivar of Bangladesh, Int. Food Res. 19(2): 503-508.
Razazadeh, S.H., Baha-Aldini, B.Z.B.F., Vatanara, A., Behbahani, B., Rouholamini, N.A., Maleky-Doozzadeh, M., Yarigar-Ravesh, M. and Pirali, H.M. (2008). Comparison of super critical fluid extraction and hydrodistillation methods on lavanders essential oil composition and yield. J. Medicinal Plants. 7: 63-68.
Sabir, S.M., Hayat, I. and Gardezi, S.D.A. (2003). Estimation of sterols in edible fats and oils. Pk. J. Nuti. 2(3): 178-181.
Suarez, M., Entenza, J.M. and Dorries, C. (2003). Expression of a plant derived peptide harbouring water cleaning and antimicrobial activities. J. Biotechnol. Bioeng. 81(1): 13-20.
Talreja, T. (2010). Screening of crude extract of flavonoids of Moringa oleifera against bacterial and fungal pathogen. J. Phytology. 2(11): 31-35.
Tint, T.K. and Mya, M. (2009). Production of biodiesel from Jatropha oil (Jatropha curcas) in pilot plant. World Academy of Sci. Engg. Technol. 477-480.
Topal, U., Sasaki, M., Goto, M. and Otles, S. (2008). Chemical compositions and antioxidant properties of essential oils from nine species of Turkish plants obtained by supercritical carbon dioxide extraction and steam distillation. Int. J. Food Sci. Nutrition. 59: 619-634.
Tsaknis, S., Lalas, S., Gergis, V., Dourtoglou, V. and Spiliotis, V. (1999). Characterization of Moringa oleifera variety mbololo seed oil of Kenya. J. Agric. Fd Chem. 47(2): 4495-4499.
Vijay, A. and Samrot, V. (2010). Bioactivity of moringa oleifera. J. Medicinal Plants. Res. 1(2):10-15.
Wang, J., Cui, H., Wei, S., Zhuo1, S., Wang, L., Li, Z. and Yi, W. (2010). Separation of biomass pyrolysis oil by supercritical CO2 extraction. J. Smart Grid and Renewable Energy. 1(1): 98-107.
Zhao, S. and Zhang, D. (2013). A parametric study of supercritical carbon dioxide extraction of oil from Moringa oleifera seeds using a response surface methodology. J. Separation and Purification Technol. 113(5): 9-17.
Citation Format
How to Cite
Dinesha, B. L., Nidoni, U., Ramachandra, C. T., Naik, N., & Sankalpa, K. (2018). Effect of extraction methods on physicochemical, nutritional, antinutritional, antioxidant and antimicrobial activity of Moringa (Moringa oleifera Lam.) seed kernel oil. Journal of Applied and Natural Science, 10(1), 287-295. https://doi.org/10.31018/jans.v10i1.1619
More Citation Formats:
Section
Research Articles