Ravish Chatrath Vikas Gupta Om Parkash Gyanendra Pratap Singh


Advanced wheat genotypes were tested for agronomic as well as grain iron and zinc content traits. The analysis of variance indicated variation for all traits except iron (Fe) and zinc (Zn). The grain Fe content ranged from 39-58 mg/kg whereas grain Zn ranged from 32-47 mg/kg among the tested lines. A significant positive correlation (0.45) was observed between grain Fe and Zn content. There was no association between yield and grain Fe and Zn content indicating that improvement in these micronutrients will not have any undesirable affect on yield. The data was further analysed for principal component analysis and genotype by trait association. The first five principal components viz., PC1 (0.3149), PC2 (0.2198), PC3 (0.1461), PC4 (0.10) and PC5 (0.0923) accounted for 0.87 of the total variation. The major traits contributing to the PC1 are days to heading, days to maturity, grain iron content and yield. The cluster analysis revealed significant variation among the tested germplasm thus providing opportunities for increasing the micronutrient content along with yield through hybridization with high micronutrient content lines.


Download data is not yet available.


Metrics Loading ...




Correlation, diversity, Grain Fe and Zinc content, Wheat

Badakhshan, H., Moradi, N., Mohammadzadeh, H., Zakeri, Reza, M. (2013). Genetic Variability Analysis of Grains Fe, Zn and Beta-carotene Concentration of Prevalent Wheat Varieties in Iran. Intl J Agri Crop Sci, 6: 57-62
Beheshtizadeh, H., Rezaie, A., Rezaie A, Ghandi, A. (2013). Principal component analysis and determination of the selection criteria in bread wheat (Triticum aestivum L.) genotypes. Int J of Agri and Crop Sci, 5 (18): 2024-2027
Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification. Pl. Soil,302:1-17
Cakmak, I., Ozkan, H., Braun, H. J., Welch, R. M., Romheld V. (2000). Zinc and iron concentrations in seeds of wild, primitive and modern wheats. Food. Nutr. Bull. 21:401–403.
Cakmak, I., Pfeiffer, W. H., McClafferty, B. (2010). Biofortification of durum wheat with zinc and iron. Cereal Chem, 87: 10-20
Chhuneja, P., Dhaliwal, H. S., Bains, N. S., Singh, K. (2006). Aegilops kotschyi and Aegilops tauschii are the sources for high grain iron and zinc. Plant Breed, 125: 529-531
Garcia-Oliveira, A. L., Tan, L., Fu, Y., Sun, C. (2009). Genetic identification of quantitative trait loci for contents of mineral nutrient in rice grain. J. Integr. Plant Biol, 51: 84-92
Gomez-Becerra, H. F., Yazici A., Ozturk L., Budak H., Peleg Z., Morgounov A., Fahima, T., Saranga Y., Cakmak, I. (2010). Genetic variation and environmental stability of grain mineral nutrient concentrations in Triticum dicoccoides under five environments. Euphytica, 171: 39-52
Graham, R. D., Senadhira, D., Beebe, S., Iglesias, C., Monasterio, I. (1999). Breeding for micronutrient density in edible portions of staple food crops conventional approaches. Field Crops Res. 60: 57-80
Joshi, A. K., Crossa, J., Arun, B., Chand, R., Trethowan, R., Vargas, M., Ortiz-Monasterio, I. (2010). Genotype - environment interaction for zinc and iron concentration of wheat grain in eastern Gangetic plains of India. Field Crops Res., 116: 268-277
Monasterio, I., Graham, R. D. (2000). Breeding for trace minerals in wheat. Food Nutr. Bull, 21:392-396
Morgounov, A., Gomez-Becerra, H. F., Abugalieva, A., Dzhunusova, M., Yessimbekova, M., Muminjanov, H., Zelenskiy, Y., Ozturk, L., Cakmak, I. (2007). Iron and zinc grain density in common wheat grown in Central Asia. Euphytica, 155:193-203
Ortiz-Monasterio, J. I, Palacios-Rojas, E., Meng, E., Pixley, K., Trethowan, R., Pena, R. J. (2007). Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci., 46: 293-307
Oury, F. X., Leenhardt, F., Remesy, C., Chanliaud, E., Duperrier, B., Balfourier, F., Charmet, G. (2006). Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat. Eur. J. Agron, 25:177-185.
Paltridge, N. G. , Milham, P. J., Ortiz-Monasterio, J. I., Velu, G., Yasmin, Z., Palmer, L. J., Guild, G. E. Stangoulis , J. C. R. (2012). Energy-dispersive X-ray fluorescence spectrometry as a tool for zinc, iron and selenium analysis in whole grain wheat. Plant Soil, 361:261-269.
PBTools, version. 1.4. (2014). Biometrics and Breeding Informatics, PBGB Division, International Rice Research Institute, Los Baños, Laguna.
Rawat, N., Tiwari, V. K., Singh, N., Randhawa, G. S., Singh, K., Chhuneja, P., Dhaliwal, H. S. (2008). Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet Resour Crop Evol, 56:53-64
STAR, version 2.0.1. 2014. Biometrics and Breeding Informatics, PBGB Division, International Rice Research Institute, Los Baños, Laguna.
Velu, G., Ortiz-Monasterio, I., Cakmak, I., Hao, Y., Singh R.P. (2014). Biofortification strategies to increase grain zinc and iron concentrations in wheat. Journal of Cereal Science, 59: 365-372
Velu, G., Singh, R. P., Huerta-Espino, J., Pena, R.J. (2011). Breeding for enhanced zinc and iron concentration in CIMMYT spring wheat germplasm. Czech J. Genetics Plant Breed, 47: 174-177
Velu, G., Singh, R.P., Huerta-Espino, J., Pena-Bautista, R. J., Arun, B., Singh, A. M., Yaqub, M., Sohu, V. S., Mavi, G.S., Crossa, J., Alvarado, G., Joshi, A.K., Pfeiffer, W.H. (2012). Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. Field Crops Res., 137:261-267
Welch, R. M., Graham, R. D. (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 55: 353-364
Zhao, F. J., Su, Y. H., Dunham, S. J., Rakszegi, M., Bedo, Z., McGrath, S. P., Shewry, P. R. (2009). Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J. Cereal Sci, 49: 290-295
Citation Format
How to Cite
Chatrath, R., Gupta, V., Parkash, O., & Singh, G. P. (2018). Evaluation of biofortified spring wheat genotypes for yield and micronutrients. Journal of Applied and Natural Science, 10(1), 210–215. https://doi.org/10.31018/jans.v10i1.1606
More Citation Formats:
Research Articles