Article Main

Sheeja K Raj Elizabeth K Syriac

Abstract

Soil microbial population, earth worms in soil, soil enzyme activity and organ carbon content in soil are considered as the bio indicators of soil health. They are used as indicators of soil health because of their active role in soil organic matter production, decomposition of xenobiotics and cycling of nutrients, ease of measurement and rapid response to changes in management practices. The assessment of soil health can be used to develop more sustainable crop production system. A number of herbicides have been introduced as pre and post emergence weed killer. The impact of herbicides on soil health depends on the soil type, type and concentration of herbicide used, sensitivity to non-target organisms and environmental conditions. The review elaborates the impact of herbicidal application on the biological indicators of soil health.

Article Details

Article Details

Keywords

Enzyme activity in soil, Earth worm population in soil, Herbicides, Soil microbial population, Soil organic carbon content

References
Abbas, Z., Akmal, M., Khan, K.S. and Hassan, F.U. (2015). Impact of long term application of buctril super (bromoxynil) herbicide on microbial population ,enzymes activity, nitrate N, Olsen P and total organic carbon in soil. Arch. Agron. Soil Sci. 61: 627-644. Retrieved August, 8 2015 from http://dx.doi.org/10.1080/036530340.2014.944512.
Abdel-Mallek, A.Y., Mohorram, A.M., Abdel-Kader, M.I. and Omar, A. (1994). Effect of soil treatment with the organophosphorus insecticide profenofos on the fungal flora and some microbial activities.Microbiol. Rev. 30: 428-471.
Adeboye, M.K. and Bala, A. (2011). Assessment of soil quality using soil organic carbon and total nitrogen and microbial properties in tropical agroecosystems. Agric. Sci. 2: 34-40.
Ahmad, I. and Malloch, D. (1995). Interaction of soil microflora with the bioherbicide phosphinothricin. Agric. Ecosyst. Environ. 54: 165–174.
Ahn, I.P. (2008). Glufosinate ammonium-induced pathogen inhibition and defense responses culminate in disease protection in bar-transgenic rice. Plant Physiol. 146: 213-227.
Andreoni, V., Cavalca, L., Rao, M.A., Nocerino, G., Bernasconi, S., Dell’Amico, E., Colombo, M. and Gianfreda, L. (2004). Bacterial communities and enzyme activities of PAHs polluted soils. Chemo. 57: 401-412.
Anjaneyulu, E., Balaji, M., Narasimha, G. and Ramgopal, M. (2011). Effect of pig iron slag particles on soil physico-chemical, biological and enzyme activities. Ira. J. Energy Environ. 2: 161-165.
Aon , M.A. and Colaneri, A.C. (2001). Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil. Appl. Soil Ecol. 18:255-270.
Aparna, B. (2000). Distribution, characterization and dynamics of soil enzymes in selected soils of Kerala. Ph. D thesis, Kerala Agricultural University, Thrissur, 364p.
Araujo, A.S.F., Monteiro, R.T.R. and Abarkeli, R.B. (2003). Effects of glyphosate on the microbial activity of two Brazilian soils. Chem. 52: 799-804.
Ayansina, A.B. and Amusan, O.A. 2013. Effect of higher concentrtaions of herbicides on bacterial populations in tropical soils. Unique Res. J. Agric. Sci. 1:001-005.
Ayansina, A.D.V. and Oso, B.A. (2006). Effect of two commonly use herbicides on soil microflora at two different concentrations. Afri. J. Biotech. 5: 129-132.
Baboo, M., Pasayat, M., Samal, A., Kujur, M., Maharana, J.M. and Patel, A.K. (2013). Effect of four herbicides on soil organic carbon microbial biomass-C, enzyme activity and microbial populations in agricultural soils.Int. J. Res. Environ. Sci. Technol. 3: 100-112. Retrieved August, 08 2015 from http: //www.urjournals.com.ISSN 2249-9695.
Bacmaga, M., Borose, E., Kucharski, J. and Wyszkowska, J. (2012). Enzyme activity in soil contaminated with the Aurora 40 WG herbicide. Environ. Prot. Eng. 38:91-102
Ba?maga, M., Wyszkowska , J., Borowik , A., Tomkiel, M. and Kucharski, J. (2014). Response of fungi, ?-glucosidase and arylsulfatase to soil contamination by Alister Grande 190 OD, Fuego 500 SC and Lumax 357.5 SE herbicides. Pol. J. Environ. Stud. 23(1):19–25
Bai , Z., Xu, H-J., He, H-B., Zheng, L-C. and Zhang, X-D. (2013). Alterations of microbial populations and composition in the rhizosphere and bulk soil as affected by residual acetochlor. Environ. Sci. Pollut. Res., 20:369–379.
Balasubramanian, K . and Sankaran, S. (2001). Effect of pendimethalin on soil microorganisms. Indian Agriculturist 45: 93-98.
Bandick, A.K. and Dick, R.P. (1999). Field management effects on soil enzyme activities. Soil Biol. Biochem. 31: 1471-1479.
Baruah, M. and Mishra, R.R. (1984). Dehydrogenase and urease activities in rice field soils. Soil Biol. Biochem. 16: 423-424.
Baruah, M. and Mishra, R.R. (1986). Effect of herbicide butachlor, 2, 4-D and oxyfluorfen on enzyme activities and Co2 evolution in paddy field. Plant Soil: 96:287-291
Barman, K.K. and Varshney, J.G. (2008). Impact of herbicides on soil environment. Indian J. Weed Sci. 40:10-17
Beri, V., Goswami, K.P. and Brarr, S.S. (1978). Urease activity and its Michaelis Constant for soil systems. Plant Soil 549: 105-115.
Bhattacharyya, P., Das, S. and Adhya, T.K. (2013). Root exudates of rice cultivars affect rhizospheric phosphorus dynamics in soils with different phosphorus statuses. Commun. Soil Sci. Plant Anal. 44: 1643-1658.
Bianchi, S.R., Miyazawa, M., Oliveira, E.L. and Pavan, M.A. (2008). Relationship between the mass of organic matter and carbon in soil. Braz. Arch. Biol. Technol. 51: 263-269.
Blagodatskaya, E. and Kuzyakov, Y. (2013). Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biol.Biochem.67: 192-211.
Bremner, J. M. and Mulvaney, R.L. (1978). Urease activity in soils. In: Burns, R.G. (ed.), Soil Enzymes. Academic Press, New York, USA, pp.149-196.
Breugelmans, P. D., Huys, P. J., De Mot R. and Sprignael, D. (2007). Characterization of novel linuron-mineralizing bacterial consortia enriched from long term linuron-treated agricultural soils. FEMS Microbiol.Ecol.62: 374-385.
Burns, R.G. (1982). Enzyme activity in soil: location and possible role in microbial ecology. Soil Biol. Biochem. 14: 423-427.
Callahan, C.A. (1988). Earthworms as ecotoxicological assessment tools. In: Edwards, C.A. and Neuhauser, E.F. (eds), Earthworms in waste and environmental assessment. SPB Academic Publishing, The Hague, pp.295-301.
Chauhan, A.K., Das, A., Kharkwal, H., Kharkwal, A.C. and Varma, A. (2006). Impact of microorganisms on environment and health.In: Chauhan, A.K. and Varma, A (eds.), Microbes: Health and Environment, Anshan, UK, pp: 1–12.
Chowdhury, A., Pradhan, S., Saha, M. and Sanyal, N. (2008). Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian J. Microbiol.48: 114-127.
Correia, F.V. and Moreira, J. C. (2010). Effects of Glyphosate and 2, 4-D on earthworm (Eisenia foetida) in laboratory tests. Bull. Environ. Contam.Toxicol. 85: 264-268.
Corstanje, R., Schulin, R. and Lark. R. (2007). Scale dependent relationships between soil organic matter and urease activity. Eur. J. Soil Sci. 58: 1087-1095.
Crawford, D.L. (1978). Lignocellulose decomposition by selected Streptomyces strains.Appl. Environ. Microbiol .35: 1041-1045.
Cyco?, M., Wójcik, M., Borymski, S. and Piotrowska-Seget, Z. (2012). A broad spectrum analysis of the effects of teflubenzuron exposure on the biochemical activities and microbial community structure of soil. J. Environ .Manage. 108:27–35.
Das, A., Prasad, R., Bhatnagar, K., Lavekar, G.S. and Varma, A. (2006). Synergism between medicinal plants and microbes. In: Chauhan, A.K. and Varma, A. (eds), Microbes: Health and Environment, Anshan, UK, pp.13-64
Dayaram, R.N. (2013). Bio-efficacy of post-emergence micro herbicides in transplanted rice (Oryza sativa L.).M.Sc. (Ag) thesis. Kerala Agricultural University, Thrissur, 134.
Dick, R.P. (1997). Soil enzyme activities as integrative indicators of soil health. In: Pankhurst, C.E., Doube, B.M. and Gupta, V.V.S.R. (eds.), Biological Indicators of Soil Health, CAB International, Wellingford, pp. 121–156.
Dick, R.P., Sandor, J.A., Eash, N.S. (1994). Soil enzyme activities after 1500 years of terrace agriculture in the Colca Valley, Peru.Agric. Ecosyst.Environ. 50: 123-131.
Dick, W.A. and Tabatabai, M.A. (1993). Significance and potential uses of soil enzymes. In: Metting, F.B. (ed.), Soil Microbial Ecology: Application in Agricultural and Environmental Management. Marcel Dekker, NewYork, pp. 95-125.
Devi, K.M.D., Beena, S. and Abraham, C.T. (2008). Effect of 2, 4-D residues on soil microflora. J. Trop. Agric.,
46: 76-78.
Doran, J.W., Zeiss, M.R. (2000). Soil Health and Sustainability: Managing the biotic component of soil quality. Appl .Soil Ecol. 15: 3-11.
Doumbou, CL., V. Akimov, M. Côté, P.M. Charest, and C. Beaulieu. (2001). Taxonomic study on non pathogenicstreptomycetes isolated from common scab lesions on potato tubers. Syst. Appl. Microbiol. 24: 451-456.
Frank, T. and Malkomes, H.P. (1993). Influence of temperature on microbial activities and their reaction to the herbicide Goltix in different soils under laboratory conditions. ZentralblattfürMikrobiol. 148: 403-412.
Giesy, J.P., Dobson,S. and Solomon, K.R. (2000). Ecotoxicological risk assessment for roundup herbicide. Rev. Environ. Contam. 167: 35-120.
Gobi, M., Suman, J. and Ganesan, S. V. (2004). Sub lethal toxicity of the herbicide butachlor on the earthworm Perionyx sansibaricus and its histological changes. J. Soils Sediments 5: 62-86.
George, T.S., Richardson, A.E. and Simpon, R.J. (2005). Behaviour of plant derived extracellular phytase upon addition to soil. Soil. Biol. Biochem. 37: 977-988.
Hattori, T. (1973). Microbial Life in the Soil.An Introduction, Marcel Dekker, New York, USA, 427p.
Hang, M., Yang-fang, Y.E., Zhong-Yun, C., Wei-Xiang, W. and Yu-feng, D. (2002). Effects of butachlor on microbial enzyme activities in paddy soil. J. Environ. Sci. 14: 413-417.
He, Y., Shen, D., Fang, C and Zhu, Y. (2006). Rapid biodegradation of metsulfuron-methyl by a soil fungus in pure cultures and soil. World J. Microbiol. Bio technol. 22: 1095–1104.
Helling, B., Reinecke, S. A. and Reinecke, A. J. (2000). Effect of the fungicide copper oxychloride on the growth and reproduction of Eiseniafoetida (Oligocheata). Ecotoxicol. Environ. Saf. 46: 108-116.
Hussain, S., Siddique, T., Saleem, M., Arshad, M. and Khalid, A. (2009). Impact of pesticides on soil microbial diversity, enzymes and biochemical reactions. Adv. Agron. 102: 160-200.
Jarerat, A. and Tokiwa, Y. (2001). Degradation of poly (tetramethylenesuccinate) by thermophilic actinomycetes. Bio technology Letters 23: 647-651.
Jastrzebska, E. and Kucharski, J. (2007). Dehydrogenases, urease and phosphatases activities of soil contaminated with fungicides. Plant Soil Environ.53: 51–57.
Jordan, D. and Kremer, R.J. (1994). Potential use of microbial activity as an indicator of soil quality. In: Pankhurst, C.E., Double, B.M, Gupta, V.V.S. R., Grace, P.R. (eds.), Soil biota. Management in sustainable farming systems, CSIRO Australia, pp. 245-249.
Kaneda, S., Okano, S., Urashima, Y., Murakami, T. and Nakajima, S. (2009). Effects of herbicides, glyphosate on density and casting activity of earthworm, Pheretima(Amynthas) carnosus. Jpn. J. Soil Sci. Plant Nutr. 80: 469-476.
Kaur, S., Singh, S. and Phutela, R.P. (2014). Effect of herbicides on soil microorganisms.Indian J. Weed Sci., 46: 229-223.
Killham, K. (2002). Bioindicators and Sensors of Soil Health and the Application of Geostatistics. In: Burns, R.G., Dick, R.P. (eds.), Enzymes in the Environment: Activity, Ecology and Applications. Marcel Dekker, Inc., USA.
Kucharaski, J. and Wyszkowska, J. (2008). Biological properties of soil contaminated with the herbicide APYROS 75 WG. J. Elementol. 13: 357-371.
Kuperman, R.G. and Carreiro, M.M. (1997). Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol. Biochem. 29: 179-190.
Latha, P.C. and Gopal, G. (2010). Influence of herbicides on cellulolytic, proteolytic and phosphate solubilizing bacteria. Int. J. Plant Prot. 3: 83-88.
Lydy, M.J. and Link, S.L. (2003). Assessing the impact of triazine herbicides on organophosphate insecticide toxicity for the earthworm Eisenia fetida Arch. Environ. Toxicol. Chem.J.45: 343-349.
Majumdar, B., Saha, A.R., Sarkar, S., Maji, B. and Mahapatra, B.S. (2010). Effect of herbicides and fungicide application on fibre yield and nutrient uptake by jute (Corchorus olitorius) residual nutrient status and soil quality. Indian J. Agri. Sci. 80: 878-883.
Makoi, J.H.J.R. and Ndakidemi, P.A. (2008). Selected soil enzymes: examples of their potential role in the ecosystem. Afr.J. Biotechnol.,7:181-191.
Malik, J., G. Barry. and Kishore, G.M. (1989). The herbicide glyphosate. Bio factors 2: 17–25.
Martinez, C.O., Silva, C.M.M.S., Fay, E.F., Maia, A.H.N., Abakerli, R.B. and Durrant, L.R. (2008). Degradation of the herbicide sulfentrazone in a Brazilian typic hapludox soil. Soil Biol. Biochem. 40: 879–886.
Martinez, A.V. and Tabatabai, M.A. (2000). Enzymes activities in a limed agricultural soil. Biol. Fertil. Soils,
31:85-91
Mele, P.M. and Carter, M.R. (1999). Impact of crop management factors in conservation tillage farming on earthworm density, age, structure and species abundance in South Eastern Australia. Soil Tillage Res. 50: 1-10.
Milosevic, N. and Govedarica, M.M. (2002). Effect of herbicides on microbiological properties of soil, Proc. Natural Sci. Matica Srpska 102: 5-21.
Mishra, V., Chowdhary, T., Singh, A.P. and Gupta, S.B. (2013). Changes in biochemical properties of rice rhizosphere as influenced by tillage and herbicide application. Indian J. Weed Sci. 45: 231-234.
Morgante, V., Flores, C., Fadic, X., González, M., Hernández, M., Cereceda-Balic, F. and Seeger, M. (2012). Influence of microorganisms and leaching on simazine attenuation in an agricultural soil. J. Environ. Manage. 95:300–305.
Mosleh, Y.Y., Paris-Palacois,S., Couderchet, M. and Vernet, G. (2003). Effects of the herbicide soproturon on survival growth rate and protein content of mature earthworms (Lumbricus terrestris L.) and its fate in the soil. Appl. Soil Ecol.23: 69-77.
Mukhopadhyay, S.K. (1980). Effects of herbicides and insecticides alone and their combinations on soil microflora. Indian J. Weed Sci.12: 53-60.
Nadiger, S., Babu, R. and Kumar, A.B.N. (2013). Bio-efficacy of pre-emergence herbicides on weed management in maize.Karnataka J. Agri. Sci. 26: 17-19.
Ndakidemi, P.A. (2006). Manipulating legume/cereal mixtures to optimize the above and below ground interactions in the traditional African cropping systems. Afr. J. Bio technol. 5: 2526-2533.
Ndiaye, E.L., Sandeno, J.M., McGrath, D. and Dick, R.P. (2000). Integrative biological indicators for detecting change in soil quality. Am. J. Altern. Agric. 15: 26-36.
Niemi, R.M., Heiskanen, I., Ahtiainen, J.H., Rahkonen, A., Mantykoski, K., Welling, L., Laitinen, P. and Ruuttunen, P. (2009). Microbial toxicity and impacts on soil enzyme activities of pesticides used in potato cultivation. Appl. Soil Ecol. 41: 293-304.
Nusetti, O., Parejo, E., Esclapés, M.M., Rodríguez-Grau, J. and Marcano, L. (1999). Acute-sub lethal copper effects on phagocytosis and lysozyme activity in the earthworm Amynthashawayanus. Bull. Environ. Contam. Toxicol. 63: 350-356.
Oluah, N.S., Obiezue, R.N.N., Ochulor, A.J., Onuoha, E. (2010).Toxicity and histopathological effect of atrazine (herbicide) on the earthworm Nsukkadrilus mbae under laboratory conditions. Anim. Res. Int. 7: 1287-1293.
Osono, T., Iwamoto, S. and Trofymow, J.A. (2008). Colonization and decomposition of salal (Gaultheria shallon) leaf litter by saprobic fungi in successional forests on coastal British Columbia. Can. J. Microbiol. 54:427-434.
Osono, T. and Takeda, H. (2007). Microfungi associated with Abies needles and Betula leaf litter in a subalpine coniferous forest. Can. J. Microbiol. 53: 1-7.
Pal, D., Bera, S. and Ghosh, R.K. (2013). Influence of herbicides on soybean yield, soil microflora and urease enzyme activity. Indian J. Weed Sci. 45: 34-38.
Pampulha, M.E. and Oliveira, A. (2006). Impact of an herbicide combination of bromoxynil and prosulfuron on soil microorganisms.Curr. Microbiol. 53:238–243.
Panettieri , M., Lazaro, L., Lopez-Garrido, R., Murillo, J.M. and ,Madejon, E. (2013). Glyphosate effect on soil biochemical properties under conservationtillage. Soil Tillage Res. 133: 16–24.
Quilchano, C. and Maranon, T. (2002). Dehydrogenase activity in Mediterranean forest Soils. Biol. Fert. Soils 35: 102-107.
Raj, S.K. (2016). Herbicide mixtures for weed management in direct seeded puddled rice (Oryza sativa L.).Ph. D thesis, Kerala Agricultural University, Thrissur, 312p.
Rao, P.C., Lakshmi, C.S.R., Sireesha, A., Madhavi, M. and Swapna, G. (2012). Effect of oxadiargyl on soil microbiology. J. Crop Weed 8: 52-56.
Rasool, N., Reshi, Z.A. and Shah, M.A. (2014). Effect of butachlor (G) on soil enzyme activity. Eur. J. Soil Biol. 61: 94-100.
Ratcliff, A.W., Busse, M.D. and Shestak, C.J. (2006). Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Appl. Soil Ecol. 34: 114-124.
Reddy, G.B. and Faza, A. (1989). Dehydrogenase activity in sludge amended soil. Soil Biol. Biochem. 21: 327.
Reddy, P.T., Padmaja, G. and Rao, C.P. (2011). Integrated effects of vermicompost and nitrogen fertilizers on soil urease enzyme activity and yield of onion-radish cropping system. Indian J. Agric. Res. 45: 146-150.
Reichardt, W.A., Dobermann, A. and George, T. (1998). Intensification of rice production systems: oppurtunities and limits. In: Dowling, N.G., Greenfield, S.M. and Fisher, K.S (eds), Sustainability of rice in the global food system. Pacific Basin Study Centre and IRRI Publi., Davis, California, US, Manila, Philippines, pp.127-144.
Renella, G., Egamberdiyeva, D., Land, L., Mench, M. and Nannipieri, P. (2006). Microbial activity and hydrolase activities during decomposition of root exudates released by an artificial root surface in Cd. Contaminated soils. Soil Biol. Biochem. 38: 702-708.
Renella, G., Land, L., Valori, F. and Nannipieri, P. (2007). Microbial and hydrolase activity after release of low molecular weight organic compounds by a model root surface in a clayey and sandy soil. Appl. Soil .Ecol. 36: 124-129.
Romero, M.C., Urrutia, M. I., Reinoso, E.H. and Kiernan, A.M. (2009). Wild soil fungi able to degrade the herbicide isoproturon.Rev. Mexicana De Micologia, 29: 1–7.
Rezende, L.A., Assis, L.C. and Nahas, E. (2004). Carbon, nitrogen and phosphorus mineralization in two soils amended with distillery yeast. Bioresou. Technol. 94:159-167.
SSSA (Soil Science Society of America). (1997).Glossary of soil science terms 1996. Soil Science Society of America Inc, Madison.
Saeki, M. and Toyota, K. (2004). Effect of bensulfuron-methyl (a sulfonylurea herbicide) on the soil bacterial community of a paddy soil microcosm.Biol. Fertil. Soils 40:110-118.
Saha, S., Dutta, D., Karmakar, R., and Ray, P. D. (2012). Structure-toxicity relationship of chloroacetanilide herbicides. Relative impact on soil microorganisms. Environ. Toxicol. Pharmacol. 34: 307-314.
Šantri?, L., Radivojevi?, L., Gaši?, S., Stankovi?-Kalezi?, R., and Gaji? Umiljendi?, J. (2008). Delovanje metribuzina na aktivnost nekih enzima u zemljištu. Pesticidi ifitomedicina. 23: 189-194.
Santric, L., Radivojevic, L., Umiljendic, J.G., Durovic-Pejcev, R. and Saric-Krsmanovic, M. (2014). Assessment of microbial activity and biomass in different soils exposed to nicosulfuron. Pestic.Phytomed. (Belgrade) [On-line] 29: 213-219. Retrieved October, 01 2015 from http://www. doiserbia.nb.rs/ft.aspx?id= 1820-39491403213S.
Sardans, J. and Penuelas, J. (2005). Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest Soil. Biol. Biochem. 37: 455-461.
Sardans, J., Penuelas, J. and M. Estiarte, M. (2008). Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrub land. Appl. Soil Ecol. 39:223-235
Sasna, S. (2014). Evaluation of the new generation herbicide penoxsulam in transplanted rice (Oryza sativa L.).M.Sc. (Ag) thesis, Kerala Agricultural University, Thrissur,110p.
Schaller, K. (2009). Soil Enzymes: Valuable Indicators of Soil Fertility and Environmental Impacts. Bull. UASVM Horticul. 66: 2.
Schloter M, Dilly O, Munch, J.C. (2003). Indicators for evaluating soil quality. Agric. Ecosyst. Environ. 98:255–262.
Schneider, K., Turrion , M.B., Grierson, B.F. and Gallardo, J.F. (2001). Phosphatase activity, microbial phosphorus, and fine root growth in forest soil in the Sierra de Gata, western central Spain. Biol. Fertil. Soils 34:151-155
Sebiomo, A., Ogundero, V.W., and Bankole, S.A. (2011). Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity.Afr. J. Biotechnol. 10: 770-778. Retrieved February, 02 2015 from htttp://www.academicjournal. org/ AJB. DOI: 10.5897/AJB 10.989.ISSN 1684-5315©2011 Academic Journals.
Shitha, C.R., Durgadevi, K.M. and Abraham, C.T. (2015). Effect of glyphosate formulations on earthworm and microflora in soil.In: Shetty, S.V.R., Prasad, T.V.R., Reddy, M.D., Rao, A.N., Mishra, J.S., Kulshreshta, G. and Abraham, C.T. (eds) Proceedings of the 25th Asian-Pacific Weed Science Society Conference, Volume 11 (oral papers), Hyderabad, India, Indian Weed Science Society of Weed Science, Jabalpur, pp155.
Singh, H. and Singh, S. (2009). Weed management and soil microorganisms studies in irrigated summer groundnut (Arachis hypogaea L.). Indian J. Weed Sci. 41: 103-107.
Singh, V. and Singh, K. (2015). Toxic effect of herbicide 2, 4-D on the earthworm Eutyphoeus waltoni Michaelsen. Environ. Process 2: 251-260.
Singh, B.K. and Walker, A. (2006). Microbial degradation of organophosphorous compounds. FEMS Microbiol.Rev. 30: 428-471.
Sinsabaugh, R.L., Antibus, R.K. and Linkins, A.E. (1991). An enzyme approach to the analysis of microbial activity during litter decomposition. Agri. Ecosyst. Environ. 34: 43-54.
Sinsabaugh, R.L. and Moorhead, D.L. (1994.) Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biol. Biochem. 26: 1305-1311.
Sofo, A., Scopa, A., Dumontet, S., Mazzatura, A. and Pasquale, V. (2012). Toxic effects of four sulphonylureas herbicides on soil microbial biomass.J. Environ. Sci. Health, Part B. 47: 653-659. Retrieved October, 01 2015 from http://dx.doi:10.1080/03601234.2012.669205.
Srinivasulu, M. and Rangaswamy, R. (2014). Enzymes and pesticides. In: Gianfreda, L. and Rao, M.A. (eds), Enzymes in Agricultural Sciences, OMICS Group e books [e-book]. Retrieved October, 01 2015 from
http:// www.esciencecentral.org/ ebooks/enzymes/enzymes-and-pesticides.php.
Stepniewska, Z. and Wolinska, A. (2005). Soil dehydrogenase activity in the presence of chromium (III) and (VI). Int. Agrophys. 19: 79-83.
Stepniewska , Z., Wolinska, A., and Lipinsska, R. (2007). Effect of fonofos on soil dehydrogenase activity. Int. Agrophys. 21: 101–105.
Stevenson, F.J. (1986). Cycles of soil (carbon, nitrogen and phosphorous, Sulphur and micronutrients). John Wiley and Sons, Newyork.
Subrahmanyam, G., Archana, G., Chamyal, L.S. (2011). Soil microbial activity and its relation to soil indigenous properties in semi-arid alluvial and estuarine soils of Mahi river basin, Western India. Int. J. Soil Sci. 6: 224- 237.
Sukul P. (2006). Enzymatic activities and microbial biomass in soil as influenced by metalaxyl residues.Soil Biol.Biochem.38: 320- 326.
Tabatabai, M.A. (1994). Soil enzymes. In: Weaver, R.W., Angle, J.S., Bottomley, P.S. (eds) Methods of soil analysis, Part 2. Microbiological and biochemical properties.SSSA Book Series No. 5. Soil Sci. Soc. Am. Madison, Wisconsin. pp. 775-833.
Tarafdar, J.C., Yadav, R.S. and Meena, S.C. (2001). Comparative efficiency of acid phosphatase originated from plant and fungal source. J. Plant Nutr. Soil Sci. 164: 279-282.
Tischer, S. (2005). Microbial biomass and enzyme activities on soil monitoring sites in Saxony-Anhalt, Germany.Arch. Agro. Soil Sci. 51: 673-685.
Tomkiel, M., Wyszkowska, J., Kucharski, J., Bacmaga, M. and Borowik, A. (2014). Response of microorganisms and soil enzymes to soil contamination with the herbicide Successor T 550 SE. [On-line] 50: 15-27. Retrieved October, 01 2015 from epc.pwr.wroc.pl/2014/4-2014/Tomkiel_4 2014.pdf.
Trimurthulu, N., Ashok, S., Latha, M. and Rao, A.S. (2015). Influence of pre- emergence herbicides on the soil microflora during the crop growth of black gram Vigna mungo. L. Int.J. Curr.Microbiol. Appl. Sci. 4: 539-546. Retrieved November, 10 2015 from http://www.ijcmas.com.
Tiwari, M.B., Tiwari, B.K. and Mishra, R.R. (1989). Enzyme activity and carbon di oxide evolution from upland and wet land rice soil under three agricultural practices in hilly regions. Biol. Fertil. Soils 7: 359-364.
Van Eerd, L.L., Hoagland, R.E., Zablotowicz, R.M. and J.C. Hall, J.C. (2003). Pesticide metabolism in plants and microorganisms.Weed Sci. 51: 472-495.
Vandana, L.J., Rao, P.C. and Padmaja, G. (2012). Effect of herbicides and nutrient management on soil enzyme activity. J. Rice. Res. 5: 50-56.
Villanyi, L., Fuzy, A. and Biro, B. (2006). Non target microorganisms affected in the rhizosphere of the transgenic Bt corn. Cent. Res. Commun. 34: 105-108.
Vischetti, C., Capri, E., Trevisan, M., Casucci, C., Perucci, P. (2004). Biomass bed: a biological system to reduce pesticide point contamination at farm level. Chemosphere 55: 823-828.
Wang, J., Lu, Y. and Shen, G. (2007). Combined effects of cadmium and butachlor on soil enzyme activities and microbial community structure.Environ. Geol. 51: 1093-1284.
Wilke, B.M. (1991). Effect of single and successive additions of cadmium,nickel and zinc on carbon dioxide evolution and dehydrogenase activity in a sandy Luvisol. Biol. Fert. Soils 11: 34-37.
Wright, A.L. and Reddy, K.R. (2001). Phosphorus loading effects on extracellular enzyme activity in Everglades wet land soil. Soil Sci. Soc. Am. J. 65:588-595.
Wolinska, A. and Stepniewska, Z. (2012). Dehydrogenase activity in the soil environment. In: Canuto, R.A. (ed), Biochemistry, Genetics and Molecular Biology. Retrieved February, 10 2016 from http: dx.doi.org/10.5772/48294.
Xia, X., Zhao, M., Wang, H. and Ma, H. (2012). Influence of butachlor on soil enzymes and microbial growth. J. Food Agri. Environ. 9: 753-756.
Yadav, P.I.P. (2006). Bio-efficacy and residual effect of the new generation herbicide pyrazosulfuron ethyl in transplanted rice.Ph.D, thesis, Kerala Agricultural University, Thrissur, 207p.
Yang, Y.Z., Liu, S., Zheng, D., Feng, S. (2006). Effects of cadmium, zinc and lead on soil enzyme activities. J. Environ. Sci. 18: 1135-1141.
Yu ,Y. L., Shan, M., Fang .H., Wang, X. and Qiang, X. (2006). Responses of soil microorganisms and enzymes to repeated applications of Chlorothalonil. J. Agri. and Food Chem. 54: 10070-10075.
Zain, N.M.M., Mohamad, R.B., Sijam, K., Morshed, M.M., and Awang, Y. (2013). Effects of selected herbicides on soil microbial populations in oil palm plantation of Malaysia: a microcosom experiment. Afri. J. Microb. Res. 7: 367-374.
Zak D., Holmes, W.E., White, D.C., Peacock, A. D and Tilman, D. (2003). Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84: 2042-2050.
Zhou, S. P., Duan, C. P., Fu, H., Chen, Y. H., Wang, X. H. and Yu, Z. E. (2007). Toxicity assessment for chlorpyrifos contaminated soil with three different earthworm test methods. J. Environ. Sci. 19: 854-858.
Section
Research Articles

How to Cite

Herbicidal effect on the bio-indicators of soil health- A review. (2017). Journal of Applied and Natural Science, 9(4), 2438-2448. https://doi.org/10.31018/jans.v9i4.1551