Applications of molecular markers for bacterial blight resistant varieties in rice (Oryza sativa L.)
Article Main
Abstract
Bacterial blight is one of devasting disease in almost all rice growing countries. The most effective, eco-nomic and environmental strategy for control of this disease is to develop rice varieties with genetic resistance. However, new pathotype has overcome single gene for resistance in the new cultivars. So, plant breeders are con-centrating to develop high yielding varieties with durable resistance using novel technologies. Molecular marker technology has progressed tremendously in the past decade for genetic improvement of field crops. Molecular markers can improve efficiency of breeding in different ways for trait in segregating population like identify plants with target gene in maximum recovery portion of recurrent parent. The transfer of two or three genes into single variety with the help of molecular marker is expected to lead to more durable resistance. Thus, thus review describes progress made in the development of bacterial blight resistance rice varieties using Marker Assisted Selection.
Article Details
Article Details
Bacterial blight, Durable resistance, Gene pyramiding, Molecular markers, Rice
Agricultural Statistics at a glance (2014). Retrieved 2015 from https://eands.dacnet.nic.in/agricultural statistics at glance 2014.pdf
Arunakumari, K., Durgarani, C.V., Satturu, V., Sarikonda, K.R., Chitoor, P.D.R., Vutukuri, B., Laha, G.S., Nelli, A.P.K., Gattu, S., Jamal, M., Prasadbabu, A., Hajra, S. and Sundaram, R.M. (2016) Marker-Assisted Pyramiding of Genes Conferring Resistance Against Bacterial Blight and Blast Diseases into Indian Rice Variety MTU1010. Rice Science 23: 306-316
Bailey-Serres, J., Fukao, T., Ronald, P., Ismail, A., Heuer, S. and Mackill, D. (2010). Submergence tolerant rice: Sub1 journey from landrace to modern cultivars. Rice 3: 138-147.
Bandillo, N., Raghavan, C., Muyco, P.A., Sevilla, M.A.L., Lobina, I.T., Ermita, J.D., Tung, C.W., Mccouch, S., Thomson, M,m Mauleon, R, Singh, R.K., Gregoria, E.R. and Leung, H. (2013). Multi parent Advanced Generation Inter Cross (MAGIC) populations in rice: progress and potential for genetic research and breeding. Rice 6:11
Basavaraj, S. H., Singh, V.K., Singh, A., Singh, A., Singh, A., Anand, D., Yadav, S., Ellur, R.K., Singh, D., Krishana, S.G., Nagarajan, M., Mohapatra, T., Prabhu, K. V. and Singh, A.K. (2010). Marker assisted improvement of bacterial blight resistance in parental lines of Pusa RH10 a superfine grain aromatic rice hybrid. Mol Breed 26: 293–305.
Bernatzky, R. and Tanksley, S.D. (1986). Methods for detection of single or low copy sequences in tomato on southern blots. Plant Mol Biol Rep 4: 37-41.
Bharani, M., Nagarajan, P., Rabindran, R., Saraswathi, R., Balasubramanian, P. and Ramalingam, J. (2010). Bacterial leaf blight (Xa21, xa13 and xa5) pyramiding through molecular marker assisted selection into rice cultivars. Arch of Phytopathology and Plant Protection 43: 1032-1043
Bharathkumar, S., Paulraj, R. D., Brindha, P. V., Kavitha, S. and Gnanamanickam, S.S. (2010). Improvement of bacterial blight resistance in rice cultivars Jyothi and IR50 via Marker-Assisted Backcross Breeding. J Crop Improv 21: 101–116.
Bhatia, D., Sharma, R., Vikal, Y., Mangat, G.S., Mahajan, R., Sharma, N., Lore, J.S., Singh, N., Bharaj, T.S. and Singh, K. (2011). Marker-Assisted development of Bacterial Blight resistant, dwarf and high yielding versions of two traditional basmati rice cultivars. Crop Sci 51: 759-770.
Causse, M.A., Fulton, T.M., Cho, Y.G., Ahn, S.N., Chunwongse, J., Wu, K.S., Xiao, J.H., Yu, Z.H., Ronald, P.C., Harrington, S.E. (1994). Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics. 138:1251–1274.
Charpe, A., Koul, S., Gupta, S. K., Singh, A., Pallavi, J.K. and Prabhu K. V. (2012). Marker assisted gene pyramiding of leaf rust resistance genes Lr9, Lr24 and Lr28 in a bread wheat cultivar HD 2329. J. Wheat Res. 4 20–28.
Crop Improvement (2009). DARE/ICAR annual report, Indian Council of Agricultural Research (ICAR), New Delhi pp.29-40.
Collard, B.C.Y. and Mackill, D.J. (2008) Marker assisted selection: an approach for precision plant breeding in twety-first century. Philos Trans R Soc Lond B Biol Sci. 363: 557–572
Cuc, L.M., Huyen, L.T.N., Hien, P.T.M., Hang, V.T.T., Dam, N.Q., Mui, P.T., Quang, V.D., Ismail, A.M. and Ham, L. H. (2015) Application of Marker Assisted Backcrossing to Introgress
the Submergence Tolerance QTL SUB 1 into the Vietnam Elite Rice Variety-AS996. American Journal of Plant Sciences 3:528-536
Holland, J.B. (2007) Genetic architecture of complex traits in plants. Current Opinion in Plant Biology. 10:156–161.
Huq, M.A.,Akter, S., Nou, S., Kim, H.T., Jung, Y.J. and Kang, K.K. (2016) Identification of functional SNP in genes andtheir effect on plant phenotype. J of Plt Biotech. 43: 1-11.
Joseph, M., Gopalakrishnan, S., Sharma, R.K., Singh, V.P., Singh, A.K., Singh, N.K. and Mohapatra, T. (2004). Combining Bacterial Blight resistance and Basmati quality characteristics by phenotypic and molecular Marker-Assisted Selection in rice. Mol Breed 13: 377–387.
Korte, A. and Farlow, A. (2013). The advantage and limitations of trait analysis with GWAS: a review. Plant Methods 9: 29
Kumar, P., Gupta, V.K., Misra, A.K., Modi, D.R. and Pande, B.K. (2009). Potential of Molecular Markers in Plant Biotechnology. Plant Omics Journal 2:141-162.
Kumari, N. and Thakur, S. K. (2014). Randomly Amplified Polymorphic DNA a brief review. American J of Animan and Vetrinary Science 9(1): 6-13
Kurokawa, Y., Noda, T., Yomagata, Y., Angeles-shim, R., Sunohara, H., Vehara, K., Furuta, T., Nagai, K. and Kazuyuki, D. (2016). Construction of a versatile SNP array for pyramiding useful gene of rice. Plant Science 242: 131-139.
Lateef, D.D. (2015). DNA marker technologies in plants and applications for crop improvements. Journal of Bioscience and Medicines 3: 7-18
Magar, M.M., Rani, D. and Anuradha, G. (2014). Marker Assisted Selection for Bacterial leaf Blight resistance in segregating populations of Cottondora sannalu. Int J Appl Sci Biotechnol, 2:229-237.
Mammadov, J., Aggarwal, R., Buyyarapu, R. and Kumpatla, S. (2012) SNP markers and their impact on plant breeding. Int J of Plant Genomics. 2012: 1-11.
Mba, C., Guimaraes, E, P and Ghosh, K. (2012). Re-orienting crop improvement for the changing climatic condition of the 21st century. Agri and Food Security. 1:7
Mehrotra, R. S.and Agarwal, A. (2003). Plant Pathology. Tata McGraw-Hill, New Delhi.
McCouch, S.R., Kochert, G., Yu, Z.H., Wang, Z.Y., Khush, G.S., Coffman, W.R. and Tanksley, S.D. (1988) Molecular mapping of rice chromosomes. Theor Appl Genet. 76:815–829.
Ming, D.Q., Quan, W.S., Ping, Z.A., Yu, Z.H. and Ping, L. (2006). Breeding rice restorer lines with high resistance to Bacterial Blight by using molecular Marker-Assisted Selection. Rice Sci 13: 22–28.
Mundt, C.C. (1990). Probability of mutation to multiple virulence and durability of resistance gene pyramids. Phytopathol 80: 221-223
Nilausen, C., Gelinas, N. and Bull, G. (2016). Perceived acceptability of implementing marker assisted selection in the forest of British Colubia. Forest 7:286
Orjuela, J., Garavito, A., Bouniol, M., Arbelaez, J.D., Moreno, L., Kimball, J., Wilson, G., Rami, J.F., Tohme, J., Mccouch, S.R. and Lorieux. M. (2010). A Universal Core Genetic Map of rice. Theor Appl Genet 120: 563-572.
Oste, C. (1989) PCR technology. Principles and applications for DNA amplification. Palgrave Macmillam UK. Pp. 23-30.
Pandey, M.K., Rani, N.S., Sundaram, R.M., Laaha, G.S., Madhav, M.S., Rao, K.S., Sudharshan, I., Hari, Y., Varaprasad, G.S., Rao, L.V.S., Suneetha, K., Sivaranjani, A.K.P., Viraktamath, B.C. (2013). Improvement of two traditional Basmati rice varieties for bacterial blight resistance and plant stature through morphological and marker-assisted selection. Mol Breeding 31:239–246.
Pradhan, S.K., Nayak, D.K., Mohanty, S., Behera, L., Barik, S.R., Pandit, E., Lenka, S. and Anandan, A. (2015). Pyramiding of three Bacterial Blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna. Rice 8:19
Rajpurohit, D., Kumar, R., Kumar, M., Paul, P., Awasthi, A., Basha, P.O., Puri, A., Jhang, T., Singh, K. and Dhaliwal, H.S. (2011). Pyramiding of two Bacterial Blight resistance and a semi dwarfing gene in Type 3 Basmati using Marker-Assisted Selection. Euphytica 178: 111-126.
Reddy, V.R.P. (2017). New concepts in plant breeding and genetics. Adv in Plants and Agri Res 7(1): 00245.
Roychowdhury, R., Taoutou, A., Harseem, K. R. and Tan, J. (2013) Molecular marker assisted technologies for crop improvement. Crop Improvement in the era of climate change. International Publication House Ltd New Delhi 241-258.
Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. and Erlich, H.A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491.
Salgotra, R.K., Gupta, B.B., Millwood, R.J., Balasubramaniam, M., Stewart, C.N. (2012). Introgression of Bacterial Leaf Blight resistance and aroma genes using functional Marker-Assisted Selection in rice (Oryza sativa L.). Euphytica 187:313–32.
Sanchez, A. C., Brar, D. S., Huang, N. and Khush, G.S. (2000). Sequence Tagged Site markers-assisted selection for three Bacterial Blight resistance genes in rice. Crop Sci 40: 792–797
Shanthi, M.L., Devi, G.L., Kumar, G.N. and Shashidhar, H.E. (2010). Molecular Marker-assisted selection: a tool for insulating parental lines of hybrid rice against Bacterial leaf Blight. Intl J Plant Pathology 1: 114–123.
Shehata S.M., Ammar, M.H., Abdelkalik, A.F. and Zayed, B.A. (2009). Morphological, molecular and biochemical evaluation of Egyptian jasmine rice variety and its M5 derived mutants. Afr J Biotechnol 8: 6110-6116
Singh, S., Sidhu, J.S., Huang, N., Vikal, Y., Li, Z., Brar, D.S , Dhaliwal, H.S. and Khush, G.S. (2001). Pyramiding three Bacterial Blight resistance genes (xa5, xa13 and Xa21) using Marker-Assisted Selection into indica rice cultivar PR106. Theor Appl Genet 102: 1011 – 1015.
Singh, A. and Sengar, R.S. (2015). DNA Fingerprinting Based Decoding of Indica Rice (Oryza sativa L) via Molecular Marker (SSR, ISSR, & RAPD) in Aerobic Condition. Adv Crop Sci Tech 3:2.
Smart Indian Agriculture (2016) In Conversation with Ramesh Sonti, Lead Developer of Improved Samba Mashuri Rice With Bacterial Blight Resistance http://www.smartindianagriculture.in/
Sundaram, R.M., Vishnupriya, M.R., Biradar, S.K., Laha, G.S., Reddy, G.A., Rani, N.S., Sarma, N.P. and Sonti, R.V. (2008). Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica 160: 411–422.
Temnykh, S., Decterck, G., Lukashova, A., Lipovich, L., Cartinhour, S. and Mccouch, S. (2001). Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations and genetic marker potential. Genome Res 11: 1441-1452.
Toledo, A.M., Ignacio, J.C., Casal, C., Gonzaga, Z.J., Mendioro, M. and Septiningsih, E. (2015) Development of improved Ciheang-Sub1 having tolerance to anaerobic germination conditions. Plant Breed Bio 3: 77-87
Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, V., Hornes, M., Frijters, A., Pot, J., Peleman, J. and Kuiper, M. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407-4414.
Wijerathna, Y.M.A.M. (2015) Marker Assisted Selection: Biotechnology for rice molecular breeding. Adv in Crop Science and Technology. 3(4): 1000187
Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18: 6531-6535.
World population prospects the 2015 Revision. Retrived 2015 from https://esa.un.org/unpd/wpp/publications/files/key_findings_wpp_2015.pdf
Yang, S., Fresnedo-Ramrez, J., Wang, M., Cote, L., Schweitzer, P., Barba, B., Takacs, E.M., Clark, M., Lyby, J., Manns, D.C., Sacks, G., Mansheld, A.K., Londo, J., Fennelle, A., Gadoury, D., Reisch, B., Dvidson, L.C. and Sun, Q. (2016). A next-generation marker genotyping platform (Ampseq) in heterozygous crops: a case study for MAS in grape vine. Hort Res.,
3:16002
Yu, J., Rolland, J.B., Mcmullen, M.D. and Bucker, E.S. (2008). Genetic design and statistical power of Nested Association mapping in maize. Genetics 178: 539-551.
Zhang, G., Angeles, E.R., Abenes, M.L.P., Khush, G.S. and Huang, N. (1996). RAPD and RFLP mapping of the bacterial blight resistance gene xa13 in rice. Theor Appl Genet 93:65–70
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)