A review on systematic study of cellulose
Article Main
Abstract
This review attempts to bring together basic and systematic information which has been gathered on cellulose structure, types, principally that of native cellulose, over the last few decades. Even though advances have been made in the field of crystallography, powder crystallography cannot yield a definitive cellulose structure and single crystal diffraction is not possible due to the lack of suitable crystals. Knowledge obtained on the biosynthesis of native cellulose and on the polymorphy of cellulose and its derivatives help our understanding of ultrastructure. Many inconsistencies between early crystallographic studies of native cellulose have been clarified by the discovery that two polymorphs (á and â) of cellulose I exist. Models of the possible ultrastructural arrangements within native cellulose have been put forward over the decades; with advancement in technology, computer simulations of small and large systems are being created to test the viability of these ultrastructural models. It is hoped that this review will aid in the understanding of the complexity and uncertainties that still exist in this subject.
Article Details
Article Details
Structure, Polymorphy, Cellulose, Biosynthesis, Ultra-structure
Atalla, R.H. and Vanderhart, D.L. (1989). Studies on the structure of cellulose using Raman spectroscopy and solid 13C NMR. In cellulose and Wood: Chemistry and Technology, proceedings of the tenth cellulose conference (C. Schuerch, ed.). New York: John Wiley and Sons. 169-187.
Andress, K.R. (1929). The X-ray diagram of mercerized cellulose. Zietschrift Physikalische Chemie Abstracts B. 4:190-206.
Ahmed, A. U., Ahmed, N., Aslam, J., Butt, N.M., Khan, Q.H. and Atta, M.A. (1976). Neutron diffraction on studies of the unit cell of cellulose II. J. Pol. Sci. Polymer Letters Edition., 14:561-564.
Aabloo, A., French, A.D., Mikelsaar, R.H. and Pertsin, A.J. (1994). Studies of crystalline native celluloses using potentialenergy calculations. Cellulose., 1:161-168.
Brown, R., M. ,Jr. and Saxena, I. M. (2000). Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiol. Biochem., 38:57-67.
Blackwell, L. (1982). The macromolecular organization of cellulose and chitin. In Cellulose and other natural polymer systems (R. M. Brown, Jr., ed..). New York: Plenum Press.
Blackwell, L. and Machessult, R.H. (1971). Infrared spectroscopy of cellulose. In cellulose and cellulose derivatives (N. Bikales and L.E. Segal, eds) New York: Willey-Interscience.
Belton, P. S., Tanner, S.F., Cartier, N. and Chanzy, H. (1989). High resolution solid state 13C NMR spectroscopy of tunicin, an animal cellulose. Macromolecules., 22: 1615-1617.
Buleon, A. and Chanzy, H. (1978). Single crystals of cellulose II. J. Polymer Sci., 16:833-839.
Buleon, A. and Chanzy, H. (1980). Single crystals of cellulose IV: preparation and properties. Ibid. 18:1209-1217.
Chanzy, H., Henrissat, B. and Vuong, R. (1986). Structural changes of cellulose crystals during the reversible transformation cellulose I’™IIII in Valonia. Holzforschung., 40:25-30.
Chanzy, H., Henrissat, B., Vincendon, M., Tanner, S.F. and Belton, P.S. (1987). Solid state C-13-NMR and electronic microscopy study on the reversible cellulose I’™cellulose IIII transformation in Valonia. Carbohydrate Res., 160:1-11.
Chanzy, H. (1990). Aspects of cellulose structure. In cellulose source and exploitation: industrial utilization biotechnology and physico-chemical properties (J.F. Kennely, G.O. Phillips and P. A. Williams, eds). Chichester, U.K: Ellis Horwood, pp. 3-12.
Debzi, E. M., Chanzy, H., Sugiyama, J., Tekely, P. and Excoffier, G. (1991). The Iá’!Iâ transformation of highly crystalline cellulose by annealing in various mediums. Macromolecules., 24:6816-6822.
Dudley, R.L., Fyfe, C.A., Stephenson, P.J., Deslandes, Y., Hamer, G. K. and Marchessault, R. H. (1983). Highresolution 13C CP/MAS/NMR spectra of solid cellulose oligomers and the structure of cellulose II. J. Am. Chem. Soc., 105:2469-2472.
Dennis, D. T. and Preston, R.D. (1961). Constitution of cellulose microfibrils. Nature., 191:667-668.
Erata, T., Shikano, Takai, M. and Hayashi, J. (1995). NMRstudies on the structure of cellulose two dimensional solidstate NMR approach. Macromolecular Symposia. 99:25-29.
Fink, H.P., Philipp, B., Paul, D., Serimaa, R. and Paakkari, T. (1987). The structure of amorphous cellulose as revealed by wide angle X-ray scattering. Polymer 28:1265-1270.
Fengel, D. (1992). Characteristics of cellulose by deconvoluting the OH valency range in FTIR spectra. Holzforschung., 46:283-288.
Fengel, D. and Stoll, M. (1989). Crystals of cellulose grown from TFA solution. Wood Sci. Tecnol., 23:85-94.
Fengel, D. and Wegner, G. (1989). In Wood: Chemistry, Ultrastructure, Reactions. Berlin, New York: de Gruyter, p. 66.
French, A.D., Miller, D.P. and Aabloo, A. (1993). Miniature crystal models of cellulose polymorphs and other carbohydrates. Int. J. Biol. Macromolecules., 15:30-36.
French, A.D. and Murphy, V.C. (1977). A virtual bond modeling study of cellulose I. In Cellulose chemistry and technology ACS symposium Series. 48 (J. C. Arthur, Jr. ed.). Washington DC: American Chemical Society, pp. 12-29.
Gardiner, E.S. and Sarko, A. (1985). Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of cellulose IVI and IVII. Can. J. Chemistry., 63:173-180.
Gardner, K.H. and Blackwell, J. (1974). The structure of native cellulose. Biopolymers., 13:1975-2001
Gardner, K.H. and Blackwell, J. (1974a). The structure of native cellulose. Biopolymers., 13:1975-2001.
Honjo, G. and Watanabe, M. (1958). Examination of cellulose fibre by the low temperature specimen method of electron diffraction and electron microscopy. Nature., 181:326-328
Hayashi, J. Yamada, T. and Shimizu, Y.L, (1989). Memory phenomenon of the original cristal structure inn allomorphs of Na-cellulose. In cellulose and Weed: Chemistry and Technology, Proceedings ogg the tenth cellulose conference (C. Sthuerch, ed.). New York: John Wiley and Sons, pp. 77-107.
Hermans, P.H. (1949). Physics and chemistry of cellulose fibres. New York: Elsevier., pp. 13-20.
Hermans, P.H. and Weidinger, A. (1949). X-ray studies on the crystallinity of cellulose. J. Polymer Sci., 4:135-144.
Heyn, A. N.J. (1966). The microcrystalline structure of cellulose in cell walls of cotton, ramie and jute fibres as revealed by negative staining of sections. J. Cell Biol., 29:181-197.
Hanley, S.J., Giasson, J., Revol, J.F. and Gray, D.G. (1992). Atomic force microscopy of cellulose microfibrils – comparison with transmission electron-microscopy. Polymer., 33:4639-4642.
Henrissat, B., Perez, S., Tvaroska, I. and Winter, W. (1987). Multidisciplinary approaches to the structure of model compounds for cellulose II. In The Structure of Cellulose. Washington DC: American Chemical Society, pp. 38-66.
Heiner, A.P., Sugiyama, J. and Teleman, O. (1995). Crystalline cellulose Iá and Iâ studied by molecular dynamics simulation. Carbohydrate Res.,273:207-223.
Horii, F., Hirai, A. and Kitamaru, R. (1982). Solid-state highresolution 13C NMR studies of regenerated cellulose sample with different crystallinities. Polymer Bulletin. 8:163.ll
Horii, F., Hirai, A. and Kitamaru, R. (1987b). CP/MAS C-13 NMR spectra of the crystalline components of native cellulose. Macromolocules. 20:2117-2120.
Hon, D.N.-S. (1996). Cellulose and its derivatives: Structure, Reactions and Medical uses. In: Polysaccharides in medicinal Applications. Dumitriu D (ed.) Marcel Dekker, New York, pp. 87-105.
Kolpak, F.J. and Blackwell, J. (1976). Determination of the structure of cellulose II. Macromolecules., 9:273-278.
Kulshreshta, A. K. and Dweltz, N. E. (1973). Paracrystalline lattice disorder in cellulose I. Reappraisal of application of 2-phase hypothesis to analysis of powder X-ray diffractograms of native and hydrolysed cellulosic materials. J. Polymer Sci.: Polymer Physics Edition. 11:487-497.
Kuutti, L., Peltonen, J., Pene, J. and Teleman, O. (1995). Identification and surface-structure of crystalline cellulose studied by atomic force microscope. Journal of Microscopy- Oxford., 178:1-6.
Kuga, S., Takagi, S. and Brown, R.M.Jr. (1993). Native folded chain cellulose II, Polymer. 34:3293-3297.
Kooijman, J., van Eijck, B.P. and Kroon, J. (1992). Molecular dynamics simulations of crystal structures containing charged molecular structure of fibers. Papier- Fabr., 36:345-348.
Leeflang, B.R., Vliegerthart, J.F.G., Kroon-Batenburg, L.M.J., van Eijck, B.P. and Kroon, J. (1992). A 1H-NMR and MD study of intramolecular hydrogen bonds in methyl-á - cellobioside. Carbohydrate Research., 230:41-61.
Lin, K.W., Ladisch, M.R., Schaefer, D.M., Noller, C.H., Lechtenberg, V. and Tsao, G.T. (1981). Review on effect of pretreatment on digestibility of cellulosic materials. AiChE Symposium Series, 77(207): 102-106.
Lynd, L.R., Wyman, C.E. and Gerngross, T.U. (1999). Biocommodity engineering. Biotechnol. Prog., 15: 777-793.
Linder, M., Mattinen, M.L., Konttelli, M., Lindeberg, G., Stahlberg, J., Drakenberg, T., Reinikainen, T., Pettersson, G. and Annila, A. (1995). Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma ressei cellobiohydrolase I. Protein Science, 4: 1056-1064.
Lee, Y.H. and Fan, L.T. (1982). Kinetic studies of enzymatic hydrolysis of insoluble cellulose I. Biotechnology and Bioengineering., 24:2383-2406.
Liang, C.Y. and Marchessault, R.H. (1959). Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native cellulose. J. Polymer Sci., 37:385-395.
Marchessault, R.H. and Sundararajan, P.R. (1983). In Cellulose, in the polysaccharides. New York: Academic Press, p.11.
Marchessault, R.H. and Sundararajan, P.R. (1983). Cellulose, In G. O. Aspinall (ed.), The polysaccharides. Academic press, inc., New York, N.Y. Vol. 2. pp. 11-95.
Marchessault, R. H. and Sarko, A. (1967). X-ray structure of polysaccharides. In Advanced carbohydrate Chemistry 22: (M.L. Wolfrom, ed.). New york: Academic Press, pp. 421-483.
Mann, J. and Marrinan, H.J. (1958). Crystalline modification of cellulose. Part II. A study with plane polarized infrared radiation. J. Polymer Sci., 32:357-370.
Meyer, K.H. and Misch, L. (1937). Positions des atomes dans le nouveau modele spatial de la cellulose. Helvetica Chimica Acta., 20:232-245.
Meyer, K.H. and Mark, H. (1928). The structure of the crystallized components of cellulose. Berichte der Deutschen Chemica Gesellschaft., 61(B): 593-614.
Morosoff, N. (1974). Never dried cotton fibres. Crystallinity and crystallite size. Journal of Applied Polymer Science, 18:1837-1854.
Nishimura, H., Okano, T., Sarko, A. (1991a). Mercerization of cellulose. 5. Crystal and molecular structure of Na-cellulose I. Macromolecules., 24:759-770.
Nishimura, H., Okano, T., Sarko, A. (1991b). Mercerization of cellulose. 5. Crystal and molecular structure of Nacellulose IV. Ibid., 771-778.
Nyburg, S. C. (1961). Fibrous macromolecular substances. In X-ray analysis of organic structures (L. F. Fieser and M. Fieser, eds). New York: Academic Press, pp. 302-314.
Okamura, K. (1991). Structure of cellulose. In wood and Cellulosic Chemistry (D. N.S. Hon and N. Shiraishi, eds). New York: Marcel Dekker, pp. 89-111.
Okano, T. and Sarko, A. (1985). Mercerization of cellulose. II. Alkali-cellulose intermediates and a possible mercerization mechanism. Ibid., 30:325-332.
Okano, T., Koyanagi, A., Kondo, Y. and Seko, A. (1989). Structural variation of native cellulose related to its source. In cellulose and wood: chemistry and technology , proceeding of the tenth cellulose conference (C. Schuerch ed.) New York: John Willy and Sons, pp. 53-65.
Okano and Sarko, A. (1984). Mercerization of Cellulose I. Xray diffraction evidence for intermediate structures. J. Appl. Polymer Sci., 29: 4175-4182.
Ott, E., Spurlin, H., Graffine, M. and Mark, H. (1954). Cellulose and cellulose derivatives. Interscience, New York, pp 217-300.
O’Sullivan, A. C. (1995). Modelling of cellulose molecule interactions. Ph.D thesis. University of Wales, Bangor, Gwynedd, UK.
Paakkari, T., Serimaa, R. and Fink, H.P. (1989). The structure of amorphous cellulose. Acta Polymerica., 40:731-734.
Pandey, A., Mathew, G.M., Sukumaran, R.K., Singhania, R.R. (2008). Progress in research on fungal cellulases for lignocellulose degradation. J. Scientific & Industrial Research., 67: 898-907.
Pizzi, A. and Eaton, N. (1984). The structure of cellulose by conformational analysis 1. Cellobiose and Methyl-á-cellobioside. Journal of Macromolecular Science Chemistry, A21:1443-1446.
Pizzi, A. and Eaton, N. (1987). The structure of cellulose by conformational analysis. Part 4. Crystalline cellulose II, Ibid., 24:901-918.
Preston, R.D. (1975). X-ray analysis and the structure of the components of plant cell walls. Physics Reports, 21: 183-226.
Preston, R.D. (1986). Natural celluloses. In cellulose: structure, modification and hydrolysis (R.A. Young and R.M. Rowell, eds). New York: John wiley and sons, pp. 3-27.
Reis, D., Vian, B., Chanzy, H. and Roland, J.C. (1991). Liquid crystal type assembly of native cellulose-glucuronoxylans extracted from plant cell wall. Biology of the cell., 73:173-178.
Revol, J. F. and Goring, D.A. (1983). Directionally of the fibre c-axis of cellulose crystallites in microfibrils of Valonia ventricosa. Polymer, 24:1547-1550.
Reinikainen, T., Teleman, O., Teeri, T.A. (1995). Effect of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma ressei. Proteins, 22:392-403.
Reisling, S. and Brickmann, J. (1995). Theoretical invertigation on the structure and physical properties of cellulose. Macromolecular theory and simulations. 4:725-743.
Roche, E. and Chanzy, H. (1981). Electron microscopy study of the transformation of cellulose I into cellulose IIII in Valonia. Int J. Biol. Macromolecules., 3 : 201-206.
Sarko, A. and Muggli, R. (1974). Packing analysis of carbohydrates and polysaccharides. III. Valonia cellulose and cellulose II. Macromolecule., 7:486-494.
Sarko, A. (1987). Cellulose- How much do we know about its structure. In wood and cellulosics: Industrial utilization, biotechnology, structure and properties (J.F. Kennedy, ed.). Chichester, U.K.: Ellis Horwood, pp 55-70.
Sarko, A. (1978). What is the crystalline structure of cellulose. Tappi,. 61: 59-61.
Simon, I., Scheraga, H. A. and Manley, R. St. J. (1988a). Structure of cellulose. 1. Low–energy conformations of single chains. Macromolecule, 21:983-990.
Shefter, E. and Trublood, K.N. (1965). The crystal and molecular structure of D(+) barium uridine-51 phosphate. Acta Crystallographica, 18: 1067-1077.
Sponsler, O. and Dore, W.H. (1926). The structure of ramie cellulose as derives from X-ray data. Fourth Colloid Symposium Monograph., 41:174-202.
Stipanovic, A.J. and Sarko, A. (1976). Packing analysis of carbohydrates and polysaccharides. 6. Molecular and crystal structure of regenerated cellulose II. Macromolecules, 9:851-857.
Sugiyama, J., Persson, J. and Chanzy, H. (1991). Combined IR and electronic diffraction study of the polymorphism of native cellulose. Macromolecules., 24:2461-2466.
Sugiyama, J. and Okano, T. (1989). Electron microscopic and X-ray diffraction study of cellulose IIII cellulose conference (C. Schuerch, ed.). New York: John Wiley and Sons, pp. 119-127.
Sugiyama, J.(1992). Crystal forms of native cellulose. Mokuzai Gakkaishi., 38:723-731.
Tasker, S., Badyal, J.P.S., Backson S.C.E. and Richards, R.W. (1994). Hydroxyl accessibility in celluloses. Polymer, 35:4717-4721.
Tormo, J., Lamed, R., Chirino, A.J., Morag, E., Bayer, E.A., Shoham, Y. and Steitz, T.A. (1996). Crystal structure of a bacterial family III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO Journal., 15:5739-5751.
Tsuboi, M. (1957). Infrared spectrum and crystal structure of cellulose. J. Polymer Sci., 25 : 159-171.
Tuomela, M., Vikman, M., Hatakka, A. and Itavaara, M. (2000). Biodegradation of lignin in a compost environment: a review. Bioresource Tachnol., 72 : 169-183.
Verlhac, C., Dedier, J. and Chanzy, H. (1990). Availability of surface hydroxyl groups in Valonia and bacterial cellulose. J. Polymer Sci.: Part A: Polymer Chemistry. 28:1171-1177.
van Soest, P.J. (1994). Nutrition ecology of the ruminant, 2nd ed. Cornell University Press, Tthaca, N.Y.
Vyas, N.K. (1991). Atomic feature of protein carbohydrate intetraction. Current Opinion in Structural Biology., 1 : 732- 740.
Woodcock, C. and Sarko, A. (1980). Packing analysis of carbohydrates and polysaccharides. II Molecular and crystal structure of native ramie cellulose. Macromolecules, 13:1183-1187.
Wellard, H.J. (1954). Variation in the lattice spacing of cellulose. J. Polymer Sci., 13:471-476.
Woodcock, S., Henrissat, B. and Sugiyama, J. (1995). Docking of Congo red to the surface of crystalline cellulose using molecular mechanics. Biopolymers, 36:201-210.
Walton, A.G. and Blackwell, J. (1973). In biopolymers. Vol 22, New York: Academic Press, p.468.
Yamamoto, H. and Horii, F. (1994). In situ crystallization of Bacterial cellulose I. Influences of polymeric additivesw, stirring and temperature on the formation cellulose Iá and Iâ as revealed by cross polarization/magic angle spinning (CP/ MAS) 13C NMR spectroscopy. Cellulose,1 : 57-66.
Yamamoto, H. and Horii, F. (1993). CP/MAS 13C NMR analysis of the crystal transformation induced for Valonia Cellulose by annealing at high temperature. Macromolecules, 26 : 1313-1317.
Zeronium, S.H. and Ryu, H.S. (1987). Properties of cotton fibres containing the cellulose IV crystal structure. J. Appl. Polymer Sci., 33 : 2587-2604.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)