##plugins.themes.bootstrap3.article.main##

Ajit Kaur Urmila Gupta Phutela

Abstract

Growing environmental concerns and increasing demands from end-use sectors have increased the glob-al market for microbial products. Optimizations of production parameters hold great importance for the industry. The present study was aimed at optimization of submerged state fermentation conditions for production of lignocelluloly-tic enzymes from digested biogas slurry by Phanaerochaete chrysosporium MTCC 787. Enzyme activities for differ-ent enzymes i.e. endoglucanase, exoglucanase, ?-glucosidase; xylanase and mannanase; laccase, lignin peroxidase and manganese peroxidise, using P. chrysosporium MTCC 787 were maximum at 50% concentration of digested slur-ry and showed maximum value of xylanase i.e. 187.41U/ml. Effect of temperature (25°C, 30°C and 35°C) on lignocellu-losic bioconversion showed that at 30°C, maximum value of manganese peroxidise (167.5 U/ml) was obtained. High-est enzyme activites were obtained at selected inoculum size i.e. 10?spores/ml, e.g. 85.29 U/ml xylanase was ob-tained. Incubation period of 8 days and pH of 7.0 came out to be best conditions for P. chrysosporium MTCC787 to produce maximum enzyme activity e.g. xylanase 95.47U/ml at pH 7.0 and xylanase 144.96U/ml at 8 day incu-bation.This work presents a novel concept in optimization of fermentation process to produce lignocellulolytic en-zymes as this work is focussed on utilization of digested biogas slurry as a substrate for enzyme production and enhancement of the production with microbial source, which is environment friendly.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Cultural conditions, Digested biogas slurry, Enzymes, Fungi, Lignocelluloses, Optimization

References
Baldrian, P. (2006). Fungal laccases-occurrence and properties. FEMS Microbiol. Rev. 30: 215–242.
Chellapandi, P. and Himanshu, M. (2008). Production of endoglucanase by the native strains of Streptomyces isolates in submerged fermentation. Braz. J. Microbiol., 39: 122-27.
Dhakar, K., Pandey, A. (2013). Laccase production from a temperature and pH tolerant fungal strain of Trametes hirsutaMTCC 11397.Enz. Res. 10: 1-9.
Ding, S. and Himmel, M. (2006). The maize primary cell wall microfibril: A new model derived from direct visualization. J. Agric. Food Chem. 54: 597-606.
Eberhart, B.M., Beek, R.S., Goolsby, K.M. (1977). Cellulose of Neurospora crassa. J. Microbiol. 130:181–86
Großwindhager, C., Sachslehner, A., Nidetzky, B. and Haltrich, D. (1999). “Endo-?-1,4-D-mannanase is efficiently produced by Sclerotium (Athelia) rolfsii under derepressed conditions,” J. Biotechnol. 67(2-3): 189–203.
Han, L., Feng, J., Zhu, C., and Zhang, X. (2009). Optimizing cellulase production of Penicillium waksmanii F10-2 with response surface methodology. African J. Biotechnol. 8: 3879-86.
Jecu, L. (2000). Solid state fermentation of agricultural waste for endogluconase production. Indus. Crops Prod. 11: 1-5.
Jordaan, J., Leukes, W.D. (2003). Isolation of a thermostable laccase with DMAB and MBTH oxidative coupling activity from a mesophilic white rot fungi. Enz. Microbial. Technol. 33: 212–219.
Jørgensen, H., Erriksson, T., and Börjesson, J. (2003). Purification and characterisation of five cellulases and one xylanases from Penicillium brasilianum IBT 20888. Enzyme Microb. Technol.32: 851-61.
Karmakar, M., and Ray, R. (2010). Extra Cellular Endoglucanase Production by Rhizopus oryzae in Solid and Liquid State Fermentation of Agro Wastes. Asian J. Biotechnol. 2: 27-36.
Kaur, J., Chadha, B., Kumar, B., and Saini, H. (2007). Purification and characterization of two endoglucanases from Melanocarpus sp. MTCC 3922. Bioresour. Technol. 98: 74-81.
Khalid, M., Yang, W., Kishwar, N., Rajput, Z. and Arijo, A. ((2006). Study of cellulolytic soil fungi and two nova species and new medium. J. Zhejiang Univ. SCIENCE B. 7: 459- 66.
Kheng, P.P. and Omar, C.I. (2005). Xylanase production by local fungal isolates, Aspergillus niger USM AI 1 via solid state fermentation using palm kernel cake as substrate. J. Sci. Technol. 27(2): 325-36.
Kim, D.W., Yang, J.H., Jeong, Y.K. (1988). Adsorption of cellulose from Trichoderma viride on microcrystalline cellulose. Appl. Microbiol. Biotechnol. 28:148–54
Kundu, A.B., Ghosh, B.S., Ghosh, B.L. and Ghose, S.N. (1983). J. Ferm. Technol. 61: 185 (cited by Rolz (1984) Annual report on fermentation process 7: 213-356.
Laukevics, J.J., Aspite, A.F., Veistures, V.E. and Tengerdy, R.P. (1984). Solid state fermentation of wheat straw to fungal protein. Biotechnol. Bioeng. 26: 1465-74.
Lee, Y. (2005). Oxidation of Sugarcane Bagasse Using a Combination of Hypochlorite and Peroxide. A Thesis Submitted for partial fulfillment for the degree of Master of Science in Food Science.
Lonsane, B.K., Ghildyl, N.P., Budiatman, S. and Ramakrishna, S.V. (1985). Enzyme Microbial. Technol. 7: 258-65.
Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951). Protein measurement with folin-phenol reagent. J. Biol. Chem. 193: 265-75.
Macris, B.J., Kekos, D., Evangelidou, E. (1989). A simple and inexpensive method for cellulose and _-glucosidase production by Neurospora crassa. Appl. Microbiol. Biotechnol., 31:150–51
Mandels, M. (1976). Microbial sources of cellulases. In: Wilkie CR, editor. Cellulose as a Chemical and Energy Resource. New York: John Wiley and Sons 81–105.
Maurya, D.P., Singh, D., Pratap, D. and Maurya, J.P. (2012). Optimization of solid state fermentation conditions for the production of cellulase by Trichoderma reesei. J. Environ. Biol., 33: 5-8.
McWilliams, A. (2011). Microbial products: technologies, applications and global markets. BCC Research. http://www.giiresearch.com/report/bc180728-glob-microbial-prod.html. Accessed 16 Feb 2012
Mekala, N.K., Singhania, R.R., Sukumaran, R.K. and Panday, A. (2008). Cellulase production under solid state fermentation by Trichoderma reesei RUT C30: Statistical optimization of process parameters. Appl. Biochem. Biotechnol., 151: 122-31.
Menon, K., Rao, K.K., Pushalkar, S. (1994). Production of _-glucosidase by Penicillium rubrum O stall. Indian J. Exp. Biol. 32:706– 09
Miller, G.J. (1959). Use of dinitrosalicylic acid reagent for the determination of reducing sugars. Analyt. Chem., 31: 426-28.
Moo-Young, M., Moreira, A.R. and Tengerdy, R.P. (1985). Filamentous Fungi, 4: 117-44.
Mukhopadhyey, S. and Nandi, B. (1999). Optimization of cellulose production by Trichoderma reesei ATTCC 26921 using a simpliWed medium on water hyacinth biomass. J. Sci. Ind. Res., 58:107–11
Omosajola, P., and Jilani, O. (2008b). Cellulase production by Trichoderma longi, Aspergillus niger, Saccharomyces cerevisae cultured on waste materials from orange. Pak. J. Biol. Sci., 11: 2382-88.
Pardo, A.G., Forchiassin, F. (1999). Influence of temperature and pH on cellulase activity and stability in Nectria catalinensis. Rev. Argent. Microbiol., 31:31–35
Paszczynski, A.J., Ronald, L.C. and Van, B.H. (1988). Manganese peroxidase of Phanerochaete chrysosporium. Methods Enzymol., 161:264-70.
Rahman, S.H., Choudhury, J.P., Ahmad, A.L., Kamaruddin, A.H. (2007). Optimization studies on acid hydrolysis of oil palm empty fruit bunch Wber for production of xylose. Bioresour. Technol., 98:554–59
Rajendran, A., Gunasekaran, P., Lakshmanan, M. (1994). Cellulase activity of Humicola fuscoatra. Indian J. Microbiol., 34:289–95
Regalado, V., Rodriguez, F., Carnicero, A., Fuente, G. and Falcon, M.A. (1997). Lignin degradation and modification by soil inhabiting fungus Fusarium proliferatum. Appl. Environ. Microbiol., 63: 3716-18.
Robinson, T., and Nigam, S. (2001). Solid-state fermentation: A promising microbial technology for secondary metabolite production, Appl. Microbiol. Biotechnol., 55: 284-89.
Singh, R.P., Garcha, H.S. and Khanna, P.K. (1988). Laccase production by Pleurotus spp. Ind. J. Microbiol., 28: 38-41.
Singh, S., Pillay, B. and Prior, B.A. (2000). Thermal stability of ?-xylanases produced by different Thermomyces lanuginosus strains. Enzyme. Microbiol. Technol., 26:502-08.
Steiner, J., Saccha, C., Enzyaguirre, J. (1993). Culture condition for enhanced cellulose production by a native strain of Penicillium purpurogenum. World J. Microbiol. Biotechnol., 10:280–84
Tien, M. and Kirk, T.K. (1988). Lignin peroxidase of Phanerochaete chrysosporium.Methods Enzymol., 161: 238-49.
Toyama, N. and Ogawa, K. (1977). In: Ghose T K (Ed.), International Course on Biochemical Engineering Bioconversion.
Turner, E.M. (1974). Phenoloxidase activity in relation to substrate and development stage in mushroom Agaricus bisporus. Trans. Mycol. Soc., 63: 541-47.
Wojtczak, G., Breuil, C., Yamuda, J., Saddler, J.N. (1987). A comparision of the thermostability of cellulose from various thermophilic fungi. Appl. Miocrobiol. Biotechnol., 27: 82–87
Section
Research Articles

How to Cite

Optimization of cultural conditions for submerged state fermentation of di-gested biogas slurry for production of lignocellulolytic enzymes using Phanaerochaete chrysosporium MTCC 787. (2017). Journal of Applied and Natural Science, 9(3), 1729-1734. https://doi.org/10.31018/jans.v9i3.1429