Exploitation of endophytic Pseudomonas sp. for plant growth promotion and colonization in rice
Article Main
Abstract
The present investigation was carried out to exploit bacterial endophytes associated with root and leaf tissue of rice plant for plant growth promotion (PGP) and colonization study in vitro. Total 10 endophytic bacterial isolates (Pseudomonas sp.) were evaluate for PGP traits like P solubilization, production of Indole acetic acid (IAA), siderophore, ACC deaminase, protease, cellulase, fluorescent pigment, urease and denitrification activity. Out of 10 endophytic bacteria 30 %, 60 %, 20 %, 70 %, 10 % and 10 % were positive for siderophore, protease, cellulase, fluorescent pigment, urease and denitrification respectively. Maximum IAA production was recorded with isolate LRBLE7 (18.8 ?gml-1) followed by LRBRE4 (16.0 ?gml-1) and maximum P-solubilization was recorded with isolate LRBRE4 (5.8 mg 100 ml-1) followed by LRBLE7 (4.4 mg 100 ml-1). ACC deaminase production was recorded with isolate LRBLE6 (O.D=0.352 nm) followed by LRBRE5 (O.D=0.324nm). Three potential isolates (LRBRE4, LRBRE6 and LRBLE7) were selected on the basis of multiple PGP traits and were subjected to colonization study of rice seedling in vitro. Potential bacterial isolates can be exploited for improving growth and productivity in rice under sustainable management system.
Article Details
Article Details
Colonization, Endophytic bacteria, Plant growth promotion, Pseudomonas, Rice
Ariffin, H., Abdullah, N. K., Umi, Y., Shirai, Y. and Hassan, M. A. (2006). Production and characterization by Bacillus pumilus EB3. Int. J. Engg. Sci. Technol., 3: 47-53
Arora, D. K. (2007). Microbial identification modules for some agriculturally important micro-organism Pp 97-107 National Bureau of Agriculturally important micro-organism (NBAIM) Mau U.P.
Cappuccino, J. G. and Sherman, N. (2002). Microbiology: a laboratory manual (6th ed) Pearson.
Chaiharn, M., Chunhaleuchanon, S., Kozo, A. and Lumyong, S. (2008). Screening of rhizobacteria for their plant growth promoting activities. J. Kmitl. Sci. Technol., 8: 18-23
Giri, R. and Dudeja, S. S. (2013). Host specificity of plant endophytic bacterial interactions Root and nodule colonization under sterilized sand conditions in disposable coffee cups. Cent. Eur. J. Exp. Biol., 2(4): 22-26
Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res., 169:30-39
Gopalakrishnan, S., Upadhyaya, H. D., Vadlamudi, S., Humayun, P., Vidya, M. S., Alekhya, G., Singh, A., Vijayabharathi, R., Bhimineni, R. K., Seema, M., Rathore, A. and Rupela, O. (2012). Plant growth promoting traits of biocontrol potential bacteria isolated from rice rhizosphere. Springer Plus1: 71
Gordon, A. S. and Weber, R. P. (1951). Colorometric estimation of indol acetic acid. Plant Physiol., 26: 192-195
Govindasamy, V., Kumar, S. M., Kumar, U. and Annapurna, K. (2008). PGPR Biotechnology for management of abiotic and biotic stresses in crop plants. Maheshwari, D. K., and Dubey, R. C. (Eds) Potential microorganisms for sustainable agriculture I K International Publication. India. Pp 26-48
Han, Y., Wang, R., Yang, Z., Zhan, Y., Ma, Y. and Ping, S. (2015). 1-Aminocyclopropane-1-Carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals. J. Microbiol. Biotechnol., 25:1119–1128
Hung, P. Q., Kumar, S. M., Govindsamy, V. and Annapurna, K. (2007). Isolation and characterization of endophytic bacteria from wild and cultivated soybean varieties. Biol. Fertil. Soils, 44: 155–162
Jackson, M. L. (1973). Estimation of phosphorus content Soil chemical analysis Printer Hall New Delhi (India).
Ji, S. H., Gururani, M. A. and Chun, C. S. (2014). Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol. Res., 169: 83-98
Khan, M. S., Zaidi, A. and Ahmad, E. (2014). Mechanism of phosphate solubilization and physiological functions of phosphate solubilizing microorganisms. (ed) Phosphate Solubilizing microorganisms. Pp. 31-62
Kumar, U., Kumar, V. L. and Annapurna, K. (2013). Antagonistic potential and functional diversity of endo and rhizospheric bacteria of basmati rice. Oryza, 50: 162-168
Loaces, I., Ferrando, L. and Scavino, A. F. (2011). Dynamics, diversity and function of endophytic siderophore producing bacteria in rice. Microb. Ecol., 61:606–618
Mbai, F. N., Magiri, E. N., Matiru, V. N. and Nyambati, V. C. S. (2013). Isolation and characterisation of bacterial root endophytes with potential to enhance plant growth from Kenyan basmati rice.Am. Int. J. Contem. Res., 3: 25-40
Muangthong, A., Youpensuk, S. and Rerkasem, B. (2015). Isolation and characterisation of endophytic nitrogen fixing bacteria in sugarcane. Trop. Life Sci. Res., 26(1): 41–51
Naureen, Z., Hafeez, F. Y., Hussain, J., Harrasi, A. A., Bouqellah, N. and Roberts, M. R. (2015). Suppression of incidence of Rhizoctoniasolani in rice by siderophore producing rhizobacterial strains based on competition for iron. Eur. Sci. J., 11: 186-207
Panhwar, Q. A., Othman, R., Rahman, Z. A., Meon, S. and Ismail M. R. (2012). Isolation and characterization of phosphate solubilizing bacteria from aerobic rice. Afr. J.Biotechnol., 11: 2711-2719
Rangjaroen, C., Rerkasem, B., Teaumroong, N., Sungthong, R. and Lumyong, S. (2014). Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of Northern Thailand. Arch. Microbiol., 196: 35–49
Romero, F. M., Marina, M. and Pieckenstain, F. L. (2014). The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria analyzed by 16S ribosomal RNA gene pyrosequencing. F.E.M.S. Microbiol. Lett., 351: 187–194
Saharan, B. S. and Nehra, V. (2011). Plant growth promoting rhizobacteria: a critical review. Life Sci. Medicine Res. 21: 1–30
Schwyn, B. and Neilands, J. B. (1987). Universal assay for the detection and determination of siderophores. Anal. Biochem., 160: 47-56
Sessitsch, A., Hardoim, P., Döring, J., Weilharter, A., Krause, A., Woyke, T., Mitter, B., Lotte, L. H., Friedrich, F., Rahalkar, M., Hurek, T., Sarkar, A., Bodrossy, L., Overbeek, L. V., Brar, D., Elsas, J. D. V. and Hurek, B. R. (2015). Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol. Plant. Microbe. Interact., 25: 28–36
Sethia, B., Mustafa, M., Manohar, S., Patil, S. V., Jayamohan, N. S. and Kumudini, B. S. (2014). Indole acetic acid production by fluorescent Pseudomonas sp. from the rhizosphere of Plectranthus amboinicus (Lour.) Spreng and their variation in extragenic repetitive DNA sequences. Indian J. Exp. Biol., 53: 342-349
Shahzad, S. M., Khalid, A., Arshad, M. and Rehman, K. U. (2010). Screening rhizobacteria containing ACC-deaminase for growth promotion of chickpea seedlings under axenic conditions. Soil. Environ., 29(1): 38 –46
Shine, K., Kanimozhi, K., Panneerselvam, A., Muthukumar, C. and Thajuddin, N. (2016). Production and optimization of alkaline protease by Bacillus cereus RS3 isolated from desert soil. Int. J. Adv. Res. Biol. Sci., 3(7): 193-202
Singh, R. P. and Jha, P. N. (2015). Plant Growth Promoting Potential of ACC Deaminase Rhizospheric Bacteria Isolated from Aervajavanica a Plant adapted to Saline environments. Int. J. Curr. Microbiol. App. Sci., 4(7): 142-152
Souza, R. D., Beneduzi, A., Ambrosini, A., Costa, P. B., Meyer, J., Vargas, L. K., Schoenfeld, R. and Passaglia, L. M. P. (2013). The effect of plant growth promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil, 366: 585–603
Susilowati, D. N., Sudiana, I. M., Mubarika, N. R. and Suwanto, A. (2015). Species and functional diversity of rhizobacteria of rice plant in the coastal soils of Indonesia. Indo. J. agri. Sci., 16: 39-50
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)