Effect of arbuscular mycorrhizal (AM) fungi inoculation on enzymatic activity and zinc uptake under direct seeded rice system
Article Main
Abstract
The application of treatment T3 (Glomus mosseae + 100 % RDF NK) produced significantly more root volume by 72.60 %, 17.80 %, 12.25 %, 14.13 % over the application of treatment T1 (Control), treatment T5 (Glomus coronatum+ 100 % RDF NK), T6 (Gigasporadecipein + 100 % RDF NK) and T7 (BAU AM-1(Glomus sp + 100 % RDF NK), respectively. Similar trend shows at harvesting stage, here the maximum root volume (23c.c) was recorded by the application of T3 (Glomus mosseae + 100 % RDF NK). Maximum AM colonization and spore count was observed at panicle initiation stage with the application of treatment T3 (Glomus mosseae + 100 % RDF NK). This treatment also gave maximum dehydrogenase activity (55.86 µg TPF g-1 24 hr-1), acid phosphatase activity (0.299 mg PNP g-1 hr-1) and alkaline phosphatase activity (0.54 mg PNP g-1 hr-1) at panicle initiation stage. Application of treatment T3 (Glomus mosseae + 100 % RDF NK) significantly increased DTPA extractable Zn in soil and Zn content in plant when compared with all the treatments except treatment T6 (Gigasporadecipien+ 100 % RDF NK). The maximum zinc uptake (0.056 mg pot-1) by grain was recorded under treatment T3 (Glomus mosseae + 100 % RDF NK) followed by application of treatment T6 (Gigasporadecipien + 100 % N and K). Highest grain yield (14.08 g pot-1) was found with the treatment T3 (Glomus mosseae + 100 % RDF NK). As evident from the results, the AM fungal inoculation can effectively modify the soil microbe population and community structure by increasing the soil enzymatic activities and significantly increased the zinc uptake by grain in direct seeded rice (DSR).
Article Details
Article Details
DSR, Mycorrhiza, Rice yield, Soil enzyme, Spore count, Zinc uptake
Balakrishnan, N.. and Subramanian, K. S. (2012). Mycorrhizal symbiosis and bioavailability of micronutrients in maize grain. Maydica. 57: 129–138
Beura, K., Singh, M., Kumar, A., Rakshit, R. and Lal, M. (2016). Evaluation of Arbuscular Mycorrhiza Fungi Species for Their Efficiency Towards Nutrient Acquisition in Rhizospheric Soil of Maize. International Journal of Bio-resource and Stress Management, 7(1): 130-135
Boureima, S., Diouf, M., Diop, T. A., Diatta., Leye, E. M., Ndiaye, F. and Seck, D. (2008). Effects of arbuscular mycorrhizal inoculation on the growth and the development of sesame (SesamumindicumL.). African J. Agri. Research, 3(3): 234-238
Burkert, B. and Robson, A. (1994). Zn uptake in subterranean clover (TrifoliumsubterraneumL.) by three vesicular-arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biol. Biochem., 26:1117-1124
Busto, M. D. and Perez-Mateos, M. (1997). Stabilisation of cellulases by cross-linking with glutaraldehyde and soil humates Extraction of humic-fl-glucosidase fractions from soil. Biores Technol., 60: 27-33
Cakmak, I. (2008). Enrichment of cereal grains with zinc: agronomic or genetic biofortification. Plant Soil, 302 (1-2): 1–17.
Caravaca, F., Alguacil, M. M., Azcon, R., Diaz, G. and Roldan, A. (2004). Comparing the effectiveness of mycorrhizal inoculation and amendment with sugar beet, rock phosphate and Aspergillus niger to enhance field performance of the leguminous shrub DorycniumpentaphyllumL. Appl. Soil Ecol., 25(2): 169-180
Caravaca, M. M., Alguacil, R., Figueroa, D., Barea, J. M. and Roldan, A. (2003). Re-establishment of Retamasphaerocarpaas a target species for reclamation of soil physical and biological properties in a semi-arid Mediterranean area. For. Ecol. Manage. 182: 49-58
Casida, L. E., Klein, D. A. and Santoro, T. (1964). Soil dehydrogenase activity. Soil Sci., 98: 371–376
Dotaniya. M. L. .Kushawah S. K., Rajendra, S. M. V. Coumar. (2014). Rhizosphere effect of kharif crop on phosphatases and Dehydrogenase Activities in a Typic Haplustert, Natl.Sci.Lett., 37(2): 103-106
Gao, X. P., Kuyper, T. W., Zou, C. Q., Zhang, F. S. and Hoffland, E. (2007). Mycorrhizal responsiveness of aerobic rice genotypes negatively correlated with their zinc uptake when Nonmycorrhizal. Plant Soil, 290:283-291
Gerdemann, J. W. and Nicolson, T. H. (1963). Spores of mycorrhizal Endogone species extracted from soil by wet-sieving and decanting. Trans. Br. Mycol. Soc., 46: 235-244
Gomez, K. A. and Gomez, A. A. (1984) Statistical Procedures in Agricultural Research, By New York, Chichester, etc.: Wiley 2nd edition, paperback, Pp. 680
Habasy, N. R. and Abo-Zaid, M. M. A. (2005). Impact of Cd-Pb polluted water on growth and elemental composition of onion plants growth on a calcareous soil inoculated with mycorrhiza. Egypt. J. of Appl. Sci., 20: 586
Hajiboland , R., N. Aliasgharzad and Barzeghar, R. (2009). Influence of mycorrhizal fungi on uptake of Zn and P by two contrasting rice genotype s. Plant, Soil Environment, 55: 93-100
Harrington, J. T., Mexal, J. D. and Fisher, J. T. (1994). Volume displacement method provides a quick and accurate way to quantify new root production. Tree Planters’ Notes, 45: 121-124
Jansa, J., Mozafar, A. and Frossard, E. (2003). Long distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie, 23: 481–488
Johanson, A., Jakobsen, I. and Jensen, E. S. (1993). External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trifolium subterranean L. III. Hyphal transport of 32P and 15N. New Phytologist, 7:
365-386
Krishna, H. K., Nagaraju, M. A. P. and, Kumar, H. C. (2005). Effect of conjugative micronutrients and bioinoculants on nodulation, quality and seed yield of soybean. Mysore J. Agric. Sci., 39(3): 374-378
Kurle, J.E. and Pfleger, F. L. (1994). The effect of cultural practices and pesticides on VAM fungi. In: F.L. Pfleger and R.G. Linderman (Eds.) Mycorrhizae and Plant Health. APS Press, Minnesota, Pp. 101-131
Lehman, A., Veresoglou, S. D., Leifheit, E. F and Rillig, M. C. (2014). Arbuscular mycorrhizal influence on zinc nutrition in crop plants – A meta-analysis. Soil Biol. Biochem., 69: 123-131
Mar Vazquez, M., Cesar, S., Azcon, R. and Barea, J. M. (2000). Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl. Soil Ecol., 15: 261–272
Marschner, H. Ed. (1995). Mineral nutrition of higher plants. Academic Press.
Olsson, Pal Axel., Rahm, Jannice. and Aliasgharzad, Nasser. (2010). Carbon dynamics inmycorrhizal symbioses is linked to carbon costs and phosphorus benefits FEMS Microbiol Ecol. 72: 123–131
Parniske, M. (2008). Arbuscular mycorrhiza: the mother of plant root endosymbioses, Nature Rev. Microb., 6:763-775
Philips, J. M. and Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc. 55: 158–161
Piper, C. S. (1967). Soil and plant analysis. University of Adelaide, Adelaide, Australia
Sabia, E., Claps, S., Morone, G., Bruno, A., Sepe, L. and Aleandri, R. (2015). Field inoculation of arbuscular mycorrhiza on maize (Zea mays L.) under low inputs: preliminary study on quantitative and qualitative aspects. Italian J. Agron., 10: 30-33
Schellenbaum, L., Berta, G., Ravolanirina, F., Tisserant, B., Gianinazzi, S., Gianinazzi-Pearson, V. and Fitter, A. H. (1991). Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (VitisviniferaL.) Annals of Botany, 68: 135-141
Sheng, M., Tang, M., Chen, H., Yang, B., Zhang, F. and Huang Y. (2009). Influence of arbuscular mycorrhizae on root system of maize plants under salt stress. Can. J. Microbiology., 55(7): 879-886
Singh, M., Beura, K., Pradhan, A. K., Rakshit, R. and Lal, M. (2015). Ability of arbuscular mycorrhiza to promote growth of maize plant and enzymatic activity of an alluvial soil. J. App. and Nat. Sci., 7 (2): 1029-1035
Singh, M. and Kumar, N. (2007). Field evaluation of Bradyrhizobium, PSB and AM Fungus on Nodulation, Nutrient uptake, Growth and Yield of Soybean. Soybean Res., 5: 14-20
Smith, F. A. and Smith, S. E. (1997). Structural Diversity in (vesicular) arbuscular mycorrhizal symbiosis. New Phytologist, 137: 373-388
Soto, M. J., Fernaández-Aparicio, M., Castellanos-Morales, V., García-Garrido, J. M., Ocampo, J. A., Delgado, M. J. and Vierheilig, H. (2010). First indications for the involvement of trigolactoneson nodule formation in alfalfa (Medicago sativa). Soil Biol. Biochem., 42: 383-385
Subramanian, K. S., Tenshia, V. Jayalakshmi, K. and Ramachandran, V. (2009). Role of arbuscular mycorrhizal fungus (Glomus intraradices) – (fungus aided) in zinc nutrition of maize. Journal of Agricultural Biotechnology and Sustainable Development, 1: 029– 038
Tabatabai, M. A. and Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of phosphatase activity. Soil Bio Biochem., 1: 301–307
Wu, Q. S., He, X. H., Zu, Y. N., Liu C. Y., Xiao, J. and Li, Y. (2012). Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulatory metabolism if endogenous polyamines. Plant Growth Regulation, 68(1): 27-35
Zeng Lu-sheng, Liao Min, Chen Cheng-li and Huang Chang-yong. (2005). Variation of Soil Microbial Biomass and Enzyme Activities at Different Growth Stages of Rice (Oryza sativa), Rice Science, 12(4): 283-288
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)