Linseed (Linum usitatissimum L.) genetic resources for climate change intervention and its future breeding
Article Main
Abstract
Linseed or flax (Linum usitatissimum L.), a multiple purpose crop valued for its seed oil, fibre, probiotic and nutraceutical properties, is adapted to different environments and agro-ecologies. Modern breeding techniques using only limited number of selected varieties have resulted in a loss of specific alleles and thus, reduction in total genetic diversity relevant to climate-smart agriculture. However, well-curated collections of landraces, wild linseed accessions and other Linum species exist in the gene banks and are important sources of new alleles. This review is primarily focused on the studies of genetic diversity of linseed species and evaluation related to tolerance to abiotic and biotic stress factors that could be useful for improving linseed through future promising breeding programs in addition to briefly discussing different morphotypes and nutraceutical importance. Wide diversity in linseed germplasm indicates a considerable potential for improving this crop for both agronomic and quality traits required for developing climate-resilience tailored to specific environments. Recent release of the flax genome sequence coupled with wide range of genomic and analytical tools in public domain has furthered understanding of molecular mechanisms for detailed study of the genes underlying flax adaptation to stress and diversity in commercially important accessions. Important climate related traits and their constituent genes are presented and key developments for the future highlighted emphasizing the urgent need to increase the use of genetically diverse germplasm to meet the emerging challenges in agricultural production and to conserve valuable genetic resources for the future.
Article Details
Article Details
Climate change, Genebank, Genetic resources, Germplasm characterization, Linseed
Allaby, R. G., Peterson, G. W., Andrew, D. M. and Fu, Y. B. (2005). Evidence of the domestication history of flax (Linum usitatissimum) from genetic diversity of the Sad2 locus. Theor. Appl. Genet., 112: 58–65
Barvkar, V. T., Pardeshi, V. C., Kale, S. M., Qiu, S. Q., Rollins, M., Datla, R., Gupta, V. S., Kadoo, N. Y. (2013). Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum). Planta, 237(4):1149–61
Bassett, C. M., Rodriguez-Leyva, D. and Pierce, G. N. (2009). Experimental and clinical research findings on the cardiovascular benefits of consuming flaxseed. Appl. Physiol. Nutr. Metab., 34: 965–74
Booth, I., Harwood, R. J., Wyatt, J. L. and Grishanov, S. (2004). A comparative study of the characteristics of fibre-flax (Linum usitatissimum). Ind. Crops Prod., 20: 89–95
Brutch, N. B. (2002). The flax genetic resources collection held at the N.I. Vavilov Institute, Russian Federation. In: Maggioni, L.M., Pavelek, M., van Soest, L. J. M., Lipman, E. (eds) Flax genetic resources in Europe. IPGRI, Maccarese Rome, Pp 61–65
Burdon, J. J. and Leather, S. R. (1990). Pests, Pathogens and Plant Communities. Oxford: Blackwell. Pp. 344
Chen, J., Wang, L. and Thompson, L. U. (2006). Flaxseed and its components reduce metastasis after surgical excision of solid human breast tumor in nude mice. Cancer Lett., 234 (2): 168–175
Chen, Y., Zhou, X. R., Zhang, Z. J., Dribnenki, P., Singh, S. and Green, A. (2015). Development of high oleic oil crop platform in flax through RNAi-mediated multiple FAD2 gene silencing. Plant Cell Reports, 34: 643–653
Cloutier, S., Miranda, E., Ward, K., Radovanovic, N., Reimer, E., Walichnowski, A., Datla, R., Rowland, G., Duguid, S. and Ragupathy, R. (2012). Simple sequence repeat marker development from bacterial artificial chromosome end sequences and expressed sequence tags of flax (Linum usitatissimum L.). Theor. Appl. Genet., 125: 685–694
Cloutier, S., Niu, Z., Datla, R. and Duguid, S. (2009) Development and analysis of EST?SSRs for flax (Linum usitatissimum L.). Theor. Appl. Genet., 119: 53–63
Cloutier, S., Ragupathy, R., Niu, Z. and Duguid, S. (2011) SSR?based linkage map of flax (Linum usitatissimum L.) and mapping of QTLs underlying fatty acid composition traits. Mol. Breed., 28: 437–451
Colbert, T., Till, B. J., Tompa, R., Reynolds, S., Steine, M. N., Yeung, A. T., McCallum, C. M., Comai, L. and Henikoff, S. (2001). High-throughput screening for induced point mutations. Plant Physiology, 126: 480–484
Cullis, C. (2011). Linum. In: Wild Crop Relatives: Genomic and Breeding Resources Oilseeds. Kole C, (ed.) Springer, New York. pp 177–189
Dash, P. K., Cao, Y., Jailani, A. K., Gupta, P., Venglat, P., Xiang, D., Rai, R, Sharma, R., Thirunavukkarasu, N., Abdin, M. Z., Yadava, D. K., Singh, N. K., Singh, J., Selvaraj, G. Deyholos, M., Kumar, P. A. and Datla R. (2014). Genome-wide analysis of drought induced gene expression changes in flax (Linum usitatissimum) GM Crops & Food, 5(2): 106–119
Diederichsen, A. (2007) Ex-situ collections of cultivated flax (Linum usitatissimum L.) and other species of the genus Linum L. Genet. Resour. Crop Evol., 54: 661–678
Diederichsen, A. and Fu, Y.B. (2008). Flax genetic diversity as the raw material for future success. In: Proceedings of the international conference on flax and other bast plants, Saskatoon, Canada, Pp. 270–280
Diederichsen, A. and Ulrich, A. (2009). Variability in stem fibre content and its association with other characteristics in 1177 flax (Linum usitatissimum L.) genebank accessions. Ind. Crop Prod., 30(1): 33–39
Diederichsen, A., Kusters, P. M., Kessler, D., Bainas, Z. and Gugel, R. K. (2013). Assembling a core collection from the flax world collection maintained by Plant Gene Resources of Canada. Genet. Resour. Crop Evol., 60: 1479–1485
Diederichsen, A., Raney, J. P. and Duguid, S. D. (2006). Variation of mucilage in flax seed and its relationship with other seed characters. Crop Sci., 46: 365–371
Diederichsen, A., Rozhmina, T. A., Zhuchenko, A. A. and Richards, K. W. (2006b). Screening for broad adaptation in 96 flax (Linum usitatissimum L.) accessions under dry and warm conditions in Canada and Russia. Plant Genet. Resour. Newsl., 146: 9–16
Dikshit, N. and Sivaraj, N. (2015). Analysis of agro-morphological diversity and oil content in Indian linseed germplasm. Grasas Aceites, 66(1): e060. doi: http://dx.doi.org/10.3989/gya.0689141
Dillman, A.C. (1953). Classification of flax varieties, 1946. USDA Technical Bulletin No. 1054. United States Department of Agriculture, Washington, DC, Pp 56.
DIVSEEK. (2016). DivSeek: harnessing crop diversity to feed the future. Retrieved August, 2016 from www.divseek.org/.
Dwivedi, C., Natarajan, K. and Matthees, D. P. (2005). Chemopreventive effects of dietary flaxseed oil on colon tumor development. Nutr. Cancer, 51(1): 52–58
El-Beltagi, H. S. (2008). Some biochemical markers for evaluation of flax cultivars under salt stress conditions. Nat. Fibers., 5(4): 316–30.
FAOSTAT. (2016) Production of Crops: Linseed: Area Harvested and Production (tonnes). Retrieved July, 2016 from http://faostat3.fao.org/ home/index.html
Fenart, S., Ndong, Y. A., Duarte, J., Rivière, N., Wilmer, J., van Wuytswinkel, O., Lucau, A., Cariou, E., Neutelings, G., Gutierrez, L., Chabbert, B., Guillot, X., Tavernier, R., Hawkins, S., and Thomasset, B. (2010). Development and validation of a flax (Linum usitatissimum L.) gene expression oligo microarray. BMC Genomics, 11: 592
Fowler, C. (2004). Accessing genetic resources: international law establishes multilateral system. Genet. Resour. Crop Evol., 51(6): 609–620
Fu, Y. B. (2005). Geographic patterns of RAPD variation in cultivated flax. Crop Sci., 45(3): 1084–1091
Fu, Y. B. (2011). Genetic evidence for early flax domestication with capsular dehiscence. Genet. Resour. Crop Evol., 58: 1119–1128
Gitay, H., Suarez, A. and Watson, R. T. (2002). Climate change and biodiversity: IPCC Technical Paper V. Intergovernmental Panel on Climate Change. Geneva. pp 77
Gorshkova, T., Gurjanov, O., Mikshina, P., Ibragimova, N., Mokshina, N., Salnikov, V., Ageeva, M., Amenitskii, S., Chernova, T. and Chemikosova, S. (2010). Specific type of secondary cell wall formed by plant fibers. Russian J. Plant Physiol., 57(3): 328–341
Green, A. G., Chen, Y., Singh, S. P., Dribnenki, J. C. P. (2008). Flax. In Compendium of transgenic crop plants. Kole C and Hall, T.C. (eds.) Oxford, Blackwell Publishing Ltd. Pp. 199–226
Gupta, U. S. (2007). Physiology of stressed crops. Georgia, USA, Science Publishers.
Heslop-Harrison, J. S. and Schwarzacher, T. (2012). Genetics and genomics of crop domestication. In: Altman, A. and Hasegawa, P. M. (eds.) Plant biotechnology and agriculture: Prospects for the 21st century. Elsevier Academic, USA, Pp. 3–18
Hosseinian, F. S., Rowland, G. G., Bhirud, P. R., Dych, J. H. and Tyler, R. T. (2004). Chemical composition and physicochemical and hydrogenation characteristics of high-palmitic acid solin (low linolenic acid flaxseed) oil. Journal of the American Oil Chemists’ Society, 81: 185–188
Huang, S. and Ziboh, A. (2001). Gamma-linolenic acid: Recent advances in biotechnology and clinical applications. Champaign, IL, AOCS Press.
Keijzer, P. and Metz, P. L. (1992). Breeding of flax for fibre production in western Europe. In: Sharma H.S., van Sumere, C.F. (eds.) The biology and processing of flax. M. Publications, Belfast, Pp. 33–66
Kurt, O. and Bozkurt, D. (2006). Effect of temperature and photoperiod on seedling emergence of flax (Linum usitatissimum L.). Journal of Agronomy, 5: 541–545
Kutuzova, S. N. (1998). “Genetika l’na,” [Genetics of flax], in Genetika kul’turnych rastenij (len, kartofel’, morkov’, zelennye kul’tury, gladiolus, jablona, ljucerna), [Genetics of cultivated plants (flax, potato, carrot, leafy vegetables, gladiolas, apple, alfalfa)], Dragavcev, V.A. and Fadeeva, T.S. (eds.), VIR, St. Petersburg, Pp. 6–52
Kutuzova, S. N. (2000). Katalog mirovoj kolekcii VIR, Vypusk 714, Donory chozjajstvenno cennych priznakov dja selekcii l’na-dolgunca. [Catalogue of the world collection at the VIR, Volume 714, donors of economically important characters for breeding of fibre flax]. VIR, St. Petersburg, Pp. 50
Lorenc-Kuku?a, K., Amarowicz, R., Oszmia?ski, J., Doermann, P., Starzycki, M., Ska?a, J., Zuk, M., Kulma, A. and Szopa, J. (2005). Pleiotropic effect of phenolic compounds content increases in transgenic flax plant. Journal of Agricultural and Food Chemistry, 53: 3685–92
Lorenc-Kukula, K., Wróbel-Kwiatkowska, M., Starzycki, M. and Szopa, J. (2007). Engineering flax with increased flavonoid content and thus Fusarium resistance. Physiological and Plant Molecular Pathology, 70: 38–48
Lorenc-Kuku?a, K., Zuk, M., Kulma, A., Czemplik, M., Kostyn, K., Skala, J., Starzycki, M. and Szopa, J. (2009). Engineering flax with the GT family 1 solanum sogarandinum glycosyl transferase SsGT1 confers increased resistance to Fusarium infection. Journal of Agricultural and Food Chemistry, 57: 6698–6705
Ludvíková, M. and Griga, M. (2015). Transgenic Flax/Linseed (Linum usitatissimum L.) Expectations and Reality. Czech J. Genet. Plant Breed. 51 (4): 123–141
McHughen, A. (1987). Salt tolerance through increased vigor in a flax line (STS-II) selected for salt tolerance in vitro. Theor. Appl. Genet., 74: 727–32
Melnikova, L. N. V., Dmitriev, A. A., Belenikin, M. S., Speranskaya, A. S., Krinitsina, A. A., Rachinskaia, O. A., Lakunina, V. A., Krasnov, G. S., Snezhkina, A. V., Sadritdinova, A. F., Uroshlev, L. A., Koroban, N. V., Samatadze, T. E., Amosova, A. V., Zelenin, A. V., Muravenko, O. V., Bolsheva, N. L. and Kudryavtseva, A. V. (2015). Excess fertilizer responsive miRNAs revealed in Linum usitatissimum. Biochimie, 109: 36–41
Melnikova, N. V., Belenikin, M. S., Bolsheva, N. L., Dmitriev, A. A., Speranskaya, A. S., Krinitsina, A. A., Koroban, N. V., Samatadze, T. E., Amosova, A. V., Muravenko, O. V., Zelenin, A. V. and Kudryavtseva, A. V. (2014). Flax inorganic phosphate deficiency responsive miRNAs. Journal of Agricultural Science, 6(1): 156–160
Neutelings, G., Fénart, S., Lucau-Danilaa, A. and Hawkins, S. (2012). Identification and characterization of miRNAs and their potential targets in flax. Journal of Plant Physiology, 169: 1754–1766
Ottai, M.E.S., Al-Kordy, M.A.A. and Afiah, S.A. (2011). Evaluation, correlation and path coefficient analysis among seed yield and its attributes of oil flax (Linum usitatissimum) Genotypes. Aust. J. Basic Appl. Sci., 5: 252–258
Ragupathy, R., Rathinavelu, R. and Cloutier, S. (2011). Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L.) genome. BMC Genomics, 12: 217
Rashid, K. Y. (2003). Principal diseases of flax. In Flax, the genus Linum, Muir, A. D. and Westcott, N. D. (eds.) Taylor & Francis, London, UK. Pp. 92–123
Roach, M. and Deyholos, M. (2007). Microarray analysis of flax (Linum usitatissimum L.) stems identifies transcripts enriched in fibre bearing phloem tissues. Mol. Genet. Genom., 278: 149–165
Roach, M. and Deyholos, M. (2008). Microarray analysis of developing flax hypocotyls identifies novel transcripts correlated with specific stages of phloem fibre differentiation. Ann. Bot., 102(3): 317–330
Simopoulos, A. P. (2000). Human requirement for N?3 polyunsaturated fatty acids. Poult Sci., 79: 961–970
Simopoulos, A. P. (2002). The importance of the ratio of omega-6/ omega-3 essential fatty acids. Biomedicine and Pharmacotheraphy, 56: 365– 379
Singh, J. (2004). Field evaluation of linseed, Linum usitatissimum L. germplasm for resistance to alteranaria and powdery mildew diseases. J. Oilseeds Res., 21: 208–209
Soto-Cerda, B. J., Diederichsen, A., Ragupathy, R. and Cloutier, S. (2013). Genetic characterization of a core collection of flax (Linum usitatissimum L.) suitable for association mapping studies and evidence of divergent selection between fibre and linseed types. BMC Plant Biology, 13: 78
Soto?Cerda, B. J., Duguid, S., Booker, H., Rowland, G., Diederichsen, A. and Cloutier, S. (2014). Genomic regions underlying agronomic traits in linseed (Linum usitatissimum L.) as revealed by association mapping. J. Integr. Plant Biol., 56: 75–87
Upadhyaya, H. D., Thudi, M., Dronavali, N., Gujaria, N., Singh, S., Sharma, S. and Varshney, R. K. (2011). Genomic tools and germplasm diversity for chickpea improvement. Plant Genetic Resources, 9: 45–58
van Soest, L. J. M. and Bas, N. (2002). Current status of the CGNLinum collection. In: Maggioni, L. M., Pavelek, M., van Soest, L. J. M., Lipman, E. (eds.) Flax genetic resources in Europe. IPGRI, Maccarese Rome,Pp.44-48
Vavilov, N. I. (1951). The origin, variation, immunity and breeding of cultivated plants. Chronica Botanica, 13: 1–366.
Wang, L., Chen, J. and Thompson, L. U. (2005). The inhibitory effect of flaxseed on the growth and metastasis of estrogen receptor negative human breast cancer xenograftsis attributed to both its lignan and oil components. Int. J. Cancer, 116 (5): 793–798
Wang, Z., Hobson, N., Galindo, L., Zhu, S., Shi, D., McDill, J., Yang, L., Hawkins, S., Neutelings, G., Datla, R., Lambert, G., Galbraith, D. W., Grassa, C. J., Geraldes, A., Cronk, Q. C., Cullis, C., Dash, P. K., Kumar, P. A., Cloutier, S., Sharpe, A. G., Wong, G. K., Wang, J. and Deyholos, M. K. (2012). The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J., 72: 461–73
Westcott, N. A. and Muir, A. D. (2003). Flax seed lignan in disease prevention and health promotion. Phytochem. Rev., (2): 401–417
Younas, M. and Barozai, K. (2012). In silico identification of micro rnas and their targets in fiber and oil producing plant flax (Linum usitatissimum L.). Pakistan J. Bot., 44(4): 1357–62
Yu, Y., Huang, W. G., Chen, H. Y., Wu, G. W., Yuan, H. M., Song, X. X., Kang, Q. H., Zhao, D. S., Jiang, W. D., Liu, Y., Wu, J. Z., Cheng, L. L., Yao, Y. B. and Guan, F. Z. (2014). Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression. Gene, 549(1): 113–22
Yu, Y., Wu, G., Yuan, H., Cheng, L., Zhao, D., Huang, W., Zhang, S., Zhang, L., Chen, H., Zhang, J. and Guan, F. (2016). Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses. BMC Plant Biology, 16: 124
Zhuchenko, A. A. and Rozhmina, T. A. (2000). Mobilizacija geneti?eskich resursov l’na [Mobilization of flax genetic resources], VILAR AND VNIIL, Starica. Pp. 224
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)