##plugins.themes.bootstrap3.article.main##

Sunil Kumar M. Martin Luther Vikram Kumar K. Hemalatha

Abstract

A field experiment was conducted at Agricultural College Farm, Bapatla (Andhra Pradesh), study the effect of different sowing dates on the yield and quality of different varieties of clusterbean. The experiment was laid out in factorial randomized block design replicated thrice, six dates of sowing from 15th September to 1st December at fifteen days interval and two clusterbean varieties viz. RGC-936 and RGC-1003. Results revealed that growth parameters, yield attributes, yield (1568 kg ha-1) and quality parameters viz. gum content (31.6 %), protein content (30.1 %) and viscosity (3783 cP) were highest with RGC-1003 sown at 15thNovember, which was at par with 1st December sowing with same variety. The study results showed that the clusterbean crop can be grown successfully in non-traditional area as a rabi crop.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Cluster bean, Quality, Sowing dates, Varieties, Yield

References
Abdul-Baki, A.A. and Anderson, J.D. (1973). Vigour deter- mination in soybean seeds by multiple criteria. Crop Sci., 13: 630-633
Adhikari, T., Kundu, S. and Subba Rao, A. (2013). Impact of SiO2 and Mo nanoparticles on seed germination of rice (Oryza sativa L). International. J. Agric. and Food Sci. Technol., 4(8): 809-816
Anonymous, (2013). International rules for seed testing, Seed Sci. and Technol., 27: 25-30
Avinash, C., Pandey, Sharda, S., Sanjay, Raghvendra. and Yadav, S. (2010). Application of ZnOnano particles in influencing the growth rate of Cicer arietinum. J. Exptl. Nano Sci., 5(6): 488-497
Azimi, R., Feizi, H. and Mohammad, K. (2013). Can bulk and nanosized TiO2 particles improve seed germination features of wheat grass (Agropyrondesertorum). Not. Sci. Biol., 5(3):325-331
Carmen, I.U., Chithra, P., Huang, Q., Takhistoy, P., Liu, S., Kokini, J. L. (2003). Nanotechnology: a new frontier in food science. Food Technol. 57: 24–29
Dehkourdi, E. H. and Mosavi, M. (2013). Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biol.Trace Elements. Res., 155: 283–289
Hong, F., Yang, F., Liu, C., Gao, Q., Wan, Z., Gu, F., Wu, C., Ma, Z., Zhou, J. and Yang, P., (2005).Influ¬ence of nano-TiO2 on the chloroplast aging of spin¬ach under light. Biological Trace Element Res., 104: 249-260
Korishettar, P., Vasudevan, S. N., Shakuntala, N. M., Doddagoudar, S. R., Hiregoudar, S. and Kisan, B. (2016). Seed polymer coating with Zn and Fe nanoparticles: An innovative seed quality enhancement technique in pigeonpea. J. Applied Natural Sci., 8(1): 445-450
Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., van der Elst, L. and Muller, R. N. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem, 108: 2064–2110
Locke, J. M., Bryce, J. H. and Morris, P.C. (2000), effects of ethylene perception and biosynthesis inhibitors on germination and seedling growth of barley (Hordeum vulgare L.). Journal of Experimental Botany, vol, 51, Pp. 1843-1849
Lopez Moreno, M. L., De, L. R. G., Hernandez-Viezcas, J. A., Castillo-Michel, H., Botez, C. E., Peralta Videa, J. R. and Gardea, T. J. L. (2010). Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol., 44: 7315–7320
Mahmoodzadeh, H., Nabavi, M. and Kashefi, H. (2013). Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus), J Ornamental Hortic Plants, 3: 25-32
Manchikanti P. and T. K. Bandopadhyay. (2010). Nanomaterials and effects on biological systems development of effective regulatory norm. Nanoethics, 4:77-83
Nel, A., Xia, T., Madler, L., Li, N. (2006). Toxic potential of materials at the 4. nano level. Science, 311(5761): 622-627
Owolade, O. F., Ogunleti, D. O. and Adenekan, M. O. (2008). Titanium Dioxide affects disease Physiological and genetic analyses of aluminum tolerance in rice, focusing on root growth during germinations. J. Inorg. Biochem., 99. 1837-1844
Panse, V. G. and Sukhatme, P. V. (1985). Statistical methods for agricultural workers. ICAR Publication, New Delhi. p. 359
Prasad, K., Anal K. Jha. (2009). ZnO Nanoparticles, synthesis and adsorption study. Natural Science, 1: 129-135
Prasad, T. N. V. K. V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Raja Reddy, K., Sreeprasad. T. S., Sajanlal, P. R. and Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutrition, 35(6): 905-927
Sengupta, A. K., De, B. K. and Mandal, A. K. (2005). Pre-storage seed invigoration treatments for the maintenance of vigour, viability and field performance of high-vigour onion seed (Allium cepa L.). Seed Sci. Technol., 33(3): 753-760
Senthilkumar, S. (2011). Customizing nanoparticles for the maintanence of seed vigour and viability in Blackgram (Vigna mungo) cv. VBN 4. M.Sc. Thesis, Tamil Nadu Agricultural University, Coimbatore (India).
Vinodh Kumar, S. and Udayasoorian, K. (2014). Toxicity potential of different metal oxides nanoparticles on germination of maize plant. Global J. Res. Analysis, 3(1): 116-118
Zhang, L., Hong, F., Lu, S. and Liu, C. (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res., 106: 279–297
Section
Research Articles

How to Cite

Effect of dates of sowing and varieties on yield and quality of cluster bean (Cyamopsistetra gonoloba L.). (2017). Journal of Applied and Natural Science, 9(2), 1081-1084. https://doi.org/10.31018/jans.v9i2.1325