Article Main

Yashasvita Chauhan

Abstract

Miraculous herb safed musli (Chlorophytum borivilianum Sant. F), family liliaceae, is well recognized for its immense potential as an aphrodisiac. The root tubers of this herbal drug were found to be invested with Aspergillus flavus during field and storage. Therefore, the present study was designed to explore the ability of 26 co-existing rhizospheric mycoflora to inhibit A. flavus invasion and subsequent aflatoxin contamination of safed musli. The interaction of these moulds with highly toxigenic strain (CB55) of A. flavus was evaluated by dual culture method and type of interaction was graded. Most likely antagonistic effects were shown by fifteen (15) moulds, out of which Type ‘C’ interaction was evidenced in the case of six moulds; A. clavatus, A. terreus, Botryotrichum piluliferum, Candida albicans, Cephalosporium acremonium, and Cunninghamella sp. Further, ‘D’ type interaction was displayed by seven moulds which include A. niger, Colletotrichum sp., Drechslera sp., Mucor haemalis, Mycelia sterilia, Rhizopus arrhizus and Stachybotrys atra and ‘E’ type interaction was noted in the case of Trichoderma viride and Trihcothecium roseum. Regarding human health it is critical to use an ecofriendly approach to control the invasion of toxigenic moulds with root tubers of safed musli.

Article Details

Article Details

Keywords

Aflatoxin, Aspergillus flavus, Safed musli, Rhizosphere mycoflora

References
Abbas, H. K., Zablotowicz, R. M., Bruns, H. A. and Abel, C. A. (2006). Biocontrol of aflatoxin in corn by inoculation by non-aflatoxigenic Aspergillus flavus isolates. Biocontrol Sci. Technol., 16: 437 – 449
Azzis, N. H., Shahin, A. A. M. (1997). Influence of other fungi on aflatoxin production by Aspergillus flavus in maize kernels. J. food safety, 1712:113–123
Averkieva, O. (2009). Mycotoxins in Grains harvested in 2008 P: wheat. Kemin Industries, Inc.(Contamina Windows Explorer).
Bottone, E. J. and Peluso, R. W. (2003). Production by Bacillus pumilus (MSH) of an antifungal compound that is active against mucoraceae and Aspergillus species. Preliminary report. J. Med. Microbiol., 52: 69 – 74
Calvo, A. M., Wilson, R. A., Bok, J. W. and Keller, N. P. (2002). Relationship between secondary metabolism and fungal development. Microbiology and Molecular Biology Reviews, 66: 447 – 459
Cardwell, K. F. and Henry S. H. (2004). Risk of exposure to and mitigation of effect of aflatoxin on human health: a West African example. J. Toxicol Toxin Rev., 23 (2& 3): 217 – 247
Chauhan, Y., Singh, R. K., Singh, R. and Singh, S. (2011). Toxigenic moulds associated with root tubers of safed musli. I.J.S.R., 2(3):69-72
Cho, K. M., Math, R. K., Hong, S. Y., Islam, S. M. A., Mandanna, D. K., Cho, J. J., Yun, M. G., Kim, J. M., Yun, H. D. (2009). Iturin produced by Bacillus pumilus HY1 from Korean soybean sauce (Kanjang) inhibits growth of aflatoxin producing fungi. Food Control, 20:402 – 406
Ciegler, A., Lillehoj, B., Peterson, R. E. and Hall, H. H. (1966). Microbial detoxification of aflatoxin. Appl. Microbiol., 36: 1 – 66
Cvetnic, Z. and Pepljnjak, S. (2007). Interaction between certain moulds and Aflatoxin B1 producer Aspergillus flavus NRRL 3251
Dorner, J. W. (2004). Biological control of aflatoxin contamination of crops. Toxin Reviews, Philadelphia, 23 (2&3): 425 – 450
Dorner, J. W. (2008). Management and prevention of mycotoxin in peanuts. Food Additives And Contaminants, Ovon, 25(2): 203 – 208
FAO (1977). Food and agriculture organization. UN Report AGS: M 1SC / 77 / 7, 26 Pp.
Gachomo, E. W. and Kotchoni, S. O. (2004). The use of Trichoderma harzianum and T. viride as potential Biocontrol Agents against Peanuts Microflora and their effectiveness in reducing aflatoxin contamination of infected Kernels. Res. Article.
Graves, M. and Hesseltine, C. W. (1966). Fungi in flour and refrigerated dough products. Mycopath et Mycol. Appl., 29: 277 – 290
Groopman, J. D. and Kensler, T. W. (2005). Role of metabolism and viruses in aflatoxin induced liver cancer. Toxicol Appl. Pharmocol., 206: 131 – 137
Guillermina, M., Juri – F., Muzzolon, J. A., Dalcer, A. M. and Magnol, C. E. (2011). Effect of acid lactic bacteria isolated from faces of healthy dogs on growth parameters and aflatoxin B1 production by Aspergillus sp. in vitro. Mycotoxin Research, 27(4): 273 – 280
Hao, D. Y. and Brackett, R. E. (1967). Removal of aflatoxin B1 from peanut milk inoculated with Flavabacteriumauranticum. J. Food Sci., 53: 1384 – 1386
Inglis, G. D., Kawchuk, L. M. (2002). Comparative degradation of oomycete, ascomycete and basidiomycetes cell walls by mycoparasitic and biocontrol fungi. Can. J. Micribiol., 48(1): 60 – 70
Jiang, Y., Jolly, P. E., Ellis, W. O., Wang, J. S., Phillips, T. D. and Williams, J. H. (2005). Aflatoxins B1albuminadduct levels and cellular immune status in Ghanaians. Int. Immunol., 6: 807-814
Johnson, L. F. and Curl, E. A. (1972). Methods for research on the ecology of soil borne plant pathogens. Burgess Publishing Co., Minneapolis, Pp. 178
Kong, Q., Shan, S., Liu, Q., Wang, X. and Yu, F. (2010). Biocontrol of Aspergillus flavus on peanut kernels by use of a strain of marine Bacillus megaterium.Int. J. Food. Microbiol., 139 (1 – 2): 31 – 35
Krishnamurthy, Y. L., Shashikala, J., Naik, B. S. (2008). Antifungal potential of some natural products against Aspergillus flavus in soybean seeds during storage. Journal of Stored Products Research, 44: 305 – 309
Lillehoj, E. B. and Ciegler, A. (1967). Inhibition of DNA synthesis in Flavobacterium aurantiacum by aflatoxin B1. J. Bacteriol., 94: 787
Line, J. E. Brackett, R. E. and Wilkison, R. E. (1994). Evidence for degradation of aflatoxin B1 by Flavobacterium aurantiacum. J. Food. Proc., 57: 788 – 791
Martins, H. M. Almeida, I., Marques, M. and Bernando, F. (2008). Interaction of wild strains of Aspergilla with Aspergillus parasiticus ATCC15517 and aflatoxin production. Int J Mol Sci., 9(3): 394-400
Masoud, W. and Kaltoft, C. H. (2006). The effects of yeast involved in the fermentation of Coffea Arabica in East Africa on growth and Ochratoxin A(OTA) production by Aspergillus ochraceus. Int. J. Food Microbiol., 06(2):229-234
Nesci, A. V., Bluma, R. V. and Etcheverry, M. G. (2005). In vitro selection of maize rhizobacteria to study potential biological control of Aspergillus section Flavi and aflatoxin production. Eur. J. Plant Patho., 113(2):159–171
Palumbo, J. D., Baker, J. L. and Mahoney, N. E. (2006). Isolation of bacterial antagonists of Aspergillus flavus from almonds. Microb Ecol., 52 (1): 45 52
Pandey, R. and Saikia, S. K. (2014). Rhizospheric Bioweapons for tuber yield enhancement in Chlorophytum borivilianum against Meloidogyneincognita infestation. J. Plant Biochem Physiol., 2:1
Pitt, J. I. and Hocking A. D. (2006). Mycotoxins in Australia: biocontrol of aflatoxin in peanuts. Mycopathologia, 162(3): 233 – 243
Rath S. K. and Panja, A. K. (2013). Clinical evaluation of root tubers of shweta musali (Chlorophytum borivilianum L.) and its effect on semen and testosterone. Ayu., 34(3):23-275
Razzaghi-Abyaneh, M. (2013).Aflatoxin: Recent Advances and Future Prospects. Intech, Croatia.
Reddy, A. S. and Reddy, S. M. (1983). Interaction of different seed borne fungi of til (Sesamum indicum L.) and its effect on aflatoxin production by Aspergillus flavus. In, Proc. Symp. Mycotoxin in Food and Feed, K. S. Bilgrami, T. Prasad and K. K. Sinha (Eds.). Allied Press, India, Pp. 293 – 296
Roy, A. K., Singh, A. N., Mandal, N. L. and Roy, S. (2008). Antagonistic interaction between toxigenic strains of Aspergillus flavus and co-existing fungi of maize rhizosphere. Indian Phytopath, 61 (3)
Ruiquian, L., Qian, Y., Jhanaboripat, D., Thansukon, P. (2004). Bicontrol of Aspergillus flavus and Aflatoxin production, KMITL Journal of Science and Technology, Vol. (4): ISSN: 1685 – 2045
Tran-Dinh T., Pitt, J. I. and Marwell, P. J. (2013). Selection of non-toxigenic strains of Aspergillus flavus for biocontrol of aflatoxins in maize in Thailand. J. Biocontrol science and Technology, 24(6): 652-661
Turner, P., Sylla, A., Gong, Y., Diallo, M., Sutcliffe, A., Hall, A. and Wild, C. (2005). Reduction of exposure to carcinogenic aflatoxins by post harvest interventions measures in West Africa, A community based intervention study. Lancet., (365):1950-1959
Waksman, S. A. (1927). Principles of soil microbiology. Bailleire Tindall & Co., London.
Warcup, J. H. (1950). Isolation of fungi from hyphae present in soil. Nature, 175: 953
Wild, C. P. and Hall, A. J. (2000). Primary prevention of hepatocellular carcinoma in developing countries. Mutat Res., 462: 2-3
Yaling, W., Tongjie, C., Guozhong, L., Chunsan, Q., Huiyong, D., Meiling, Y., Bert-Andree, Z. and Gerd, S. (2008). Simultaneous detection of airborne aflatoxin and zearalenone in poultry house by immunoaffinity column and high performance liquid chromatography. Environ. Res., (107): 139-144
Yin, Y-ni, Yan, L-y; Jiang, J-h and Ma, Z-h (2008). Biological control of aflatoxin contamination of crops. J. Zhejiang Univ. Sci. B., 9(10): 787 – 792
Section
Research Articles

How to Cite

Biocontrol of toxigenic strain of Aspergillus flavus isolated from the root tubers of safed musli (Chlorophytum borivilianum Sant. F) using its rhizospheric mycoflora. (2017). Journal of Applied and Natural Science, 9(2), 1049-1053. https://doi.org/10.31018/jans.v9i2.1320