Estimation of yield and grain qualities of marker assisted backcross derived lines of submergence rice against sheath blight disease
Article Main
Abstract
Sheath blight caused by Rhizoctonia solani is one of the most devastating diseases of rice (Oryza sativa) and causes enormous yield losses over the world after blast, the disease can cause yield loss upto 50 per cent in advanced stage and adversely affects quality of straw. Breeding for resistant varieties is the only viable option to combat the disease efficiently. In this study, our findings showed a significant increase in number of spikelet’s per panicle (3.45 %), test weight (0.62 %) and grain yield (0.72 %) compared to recurrent parent Swarna sub-1. The range of mean performance of 18 BC2F1 selected improved lines varied for per cent disease severity from 26.75 to 43.58 at 16 days after inoculation. Among the 18 improved lines, only four lines (Swarna sub-1-6, Swarna sub-1-32, Swarna sub-1-13 and Swarna sub-1-29) showed resistance score of 1-3. The remaining fourteen lines showed moderate resistance with a score of 3-5. Hence, the resistance line could be exploited in sheath blight resistance breeding programme and the same line can also be released as a variety against sheath blight of rice after testing over multilocation trails.
Article Details
Article Details
Per cent disease severity, Sheath blight, Rice, Yield per plant
Bhaktavatsalam, G., Satyanarayana, K., Reddy, A. P. K., and John, V. T. (1978). Evaluation of sheath blight resistance in rice. International Rice Research Newsletter, 3: 9–10
Chahal, S. S., Sokhi, S. S., and Ratan, G. S. (2003). Investigation on sheath blight of rice in Punjab. Indian Phytopathol, 56: 22–26
Channamallikarjuna, V., Sonah, H., Prasad, M., Rao, G. J. N., Chand, S., Upreti, H. C., Singh, N. K., and Sharma, T. R. (2010). Identification of major quantitative trait loci qSBR11-1 for sheath blight resistance in rice. Mol Breed, 25: 155–166
Chen, Z. X., Zhang, Y. F., Feng, F., Feng, M. H., Jiang, W., Ma, Y. Y., Pan, C. H, Hua, H. L., Li, G. S., Pan, X. B., and Zuo, S. M. (2014). Improvement of japonica rice resistance to sheath blight by pyramiding qSB-9TQ and qSB-7TQ. Field Crops Research, 161: 118-127
Collard, B. C. Y., and Mackill, D. J. (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B, 363:557–572
Ghritlahre, S. K., Rao, M., Singh, V., Singh, V.K., Loitongbam, B., Yadav, S. K., Zaidi, N. W, Singh, U. S., and Singh, P. K. (2016). Inheritance of sheath blight disease resistance in submergence rice (Oryza sativa L.), International Journal of Agriculture, Environment and Biotechnology, 9(4): 507-512
Gopalakrishnan, S., Sharma, R. K., Rajkumar, K. A., Joseph, M., Singh, V. P., Singh, A. K., Bhat, K. V., Singh, N. K., and Mohapatra, T. (2008). Integrating marker assisted background analysis with foreground selection for identification of superior bacterial blight resistant recombinants in Basmati rice. Plant Breed.,127: 131–139
IRRI. (2002). Standard evaluation system for rice (SES). International Rice Research Institute, Los Banos, Philippines, p 56.
Jia, Y., Liu, G., Costanzo, S., Lee, S., and Dai, Y. (2009). Current progress on genetic interactions of rice with rice blast and sheath blight fungi. Front Agric China, 3: 231–239
Joshi, M., Singh, P. K., Waza, S. A., Singh, V., Goswami, S., Pallavi, Singh, P. K., Zaidi N. W., and Singh, U. S. (2016). Establishing an association between molecular markers and sheath blight (Rhizoctonia solani Kuhn) resistance in rice. Plant Omics, 9(4): 281-288
Kumar, A., Dixit, S., and Henry, A. (2013). Marker-assisted introgressionof major QTLs for grain yield under drought in rice. In: Varshney RK, Tuberosa R (eds) Translational genomics for crop breeding, volume II: abiotic stress, yield and quality. Wiley, New York, Pp. 47–64
Kumar, M., Singh, V., Singh, N., and Vikram, P. (2008). Morphological and virulence characterization of Rhizoctonia solani causing sheath blight of rice. Environ Ecol, 26 (3): 1158-1166
Li, Z. K., Pinson, S. R. M., Marchetti, M. A., Stansel, J. W., and Park, W. D. (1995). Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet, 91: 374-381
Malmberg, R. L., and Mauricio, R. (2005). QTL-based evidence for the role of epistasis in evolution. Genet Res (Camb), 86: 89–95
Moreau, L., Charcosset, A., Hospital, F., and Gallais, A. (1998). Marker assisted selection efficiency in populations of finite size. Genetics, 148: 1353–1365
Pandian, R. T. P., Sharma, P., Singh, V. K., Singh, A., Ellur, R. K., Singh, A. K., and Singh, U. D. (2012). Validation of sheath blight resistance derived from Tetep in a Basmati variety and parental lines of rice hybrid. Indian Phytopathol, 65: 233–237
Prabhu, K. V., Somers, D. J., Rakow, G., and Gugel, R. K. (1998). Molecular markers linked to white rust resistance in mustard Brassica juncea. Theor Appl Genet, 97: 865–870
Savary, S., Castilla, N. P., Elazegui, F. A., McLaren, C. G., Ynalvez, M. A., and Teng, P. S., (1995). Direct and indirect effects of nitrogen supply and disease source structure on rice sheath blight spread. Phytopathology, 85: 959–965
Savary, S., Teng, P. S., Willocquet L., and Nutter, F. W. J. (2006). Quantification and modeling of crop losses: a review of purpose. Ann Rev Phytopathol., 44: 89–112
Singh, A., Singh, V. K., Singh, S. P., Ellur, R. K., Singh D., Bhowmick, K., Gopala Krishnan, S., Nagarajan, M., Vinod, K. K., Mohapatra, T., Prabhu, K. V., and Singh, A. K. (2012b). Marker aided improvement of Pusa1460 an elite Basmati rice for resistance to Blast diseases. AoB Plants pls, 029. doi:10.1093/aobpla/pls029.
Singh, A. K., Singh, V. K., Singh, A., Ellur, R. K., Pandian, R. T. P., Gopala Krishnan, S., Singh, U.D., Nagarajan, M., Vinod, K. K., and Prabhu, K. V. (2015). Introgression of multiple disease resistance into a maintainer of Basmati rice CMS line by marker assisted backcross breeding, Euphytica, 203: 97–107
Singh, V. K., Singh, A., Singh, S. P., Ellur, R. K., Choudhary, V., Sarkhel, S., Singh, D., Gopala Krishnan, S., Nagarajan, M., Vinod, K. K., Singh, U. D., Rathore, R., Prasanthi, S. K., Agrawal, P. K., Bhatt, J. C., Mohapatra, T., Prabhu, K. V., and Singh, A. K. (2012a). Incorporation of blast resistance into ‘‘PRR78’’, an elite Basmati rice restorer line, through marker assisted backcross breeding. Field Crop Res., 128: 8–16
Srinivasachary, L., Willocquet, L., and Savary, S., (2011). Resistance to rice sheath blight (Rhizoctonia solani Kuhn) [teleomorph: Thanatephoru scucumeris (A. B. Frank) Donk.] disease: current status and perspectives. Euphytica, 178: 1–22
Tanksley, S. D., Young, N. D., Paterson, A. H. and Bonierbale, M. W. (1989). RFLP mapping in plant breeding: new tools for an old science. Biotechnology, 7: 257–264
Tinker, N. A. and Mather, D. E. (1995). Methods for QTL analysis with progeny replicated in multiple environments. J Agric Genom.,1: 1–16
Wang, C., Wen, G., Lin, X., Liu, X. and Zhang, D. (2009). Identification and fine mapping of the new bacterial blight gene, Xa31(t) in rice, Eur. J. Plant Pathol., 123: 235-240
Wang, Y., Pinson, S. R. M., Fjellstrom, R. G. and Tabien, R. E. (2012). Phenotypic gain from introgression of two QTL, qSB9-2 and qSB12-1 for rice sheath blight resistance. Molecular Breeding, 30: 293–303
Xu, Q., Yuan, X. P., Yu, H. Y., Wang, Y. P., Tang, S. X. and Wei, X. H. (2010). Mapping quantitative trait loci for sheath blight resistance in rice using double haploid population. Plant Breed, 130: 404-406
Zuo, S. M., Zhang, Y. F., Chen, Z. X., Chen, X J. and Pan, X. B. (2010). Current progress on genetics and breeding in resistance to rice sheath blight. Sci Sin Vitae, 40(11): 1014–1023
Zuo, S., Zhang, L., Wang, H., Yin, Y., Zhang, Y., Chen, Z., Ma, Y. and Pan, X. (2008). Prospect of the QTL-qSB-9Tq utilized in molecular breeding program of japonica rice against sheath blight. J Genet Genom., 35: 499–505
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)