Integration of biocontrol agents with fungicide, weedicide and plant growth regulator for management of stem and root rot of jute
Article Main
Abstract
Combination of chemical fungicides (viz., Carbendazim 50 WP and Tebuconazole 250 EC) and biocontrol agents (viz., Pseudomonas fluorescens Psfl1, P. striata Pst1, Azotobacter chrococcum Azbc3, Bradyrhizobium japonicum Brj4, Trichoderma aureoviridae S12, T. harzianum JTV2, T. virens JPG1, Aspergillus niger AN15 strains respectively either singly or in consortium) were used to counteract Macrophomina phaseolina, the causal organism of stem and root rot of jute. In addition, suitable plant growth regulator viz., Indole-3-acetic acid (100-1.0 µg/ppm) and herbicide Quizalofop ethyl 5 % EC were used to augment the activity of Trichoderma. T. aureoviridae strain S12 was found to be the best among the eight isolates screened for tolerance against the two fungicides and herbicide at a concentration of 10000 - 500 µg respectively as well as against M. phaseolina (Inhibition=72.33 %) in-vitro. This strain showed best compatibility with other strains and highest tolerance to fungicide i.e., Carbendazim 50 % (up to 500 ?g). Highest number (13.7×106) of active spores was recorded at a concentration of 25 ppm of IAA under in-vitro condition. S12 recorded a biocontrol efficiency of 61.8 % against stem rot of jute along with significant plant growth promotion and fibre production. Plant biomass also increased up to 7.5-12.1 % and fibre production 37.0-39.9 % with fungal and bacterial consortium + carbendazim seed dressing and soil drenching. These biocontrol fungi and PGPR consortium with high tolerance to fungicide, weedicide and plant growth regulator up to certain extent may be potentially exploited in IDM which may be a low cost technology in jute and allied fibre crops.
Article Details
Article Details
Biocontrol, Fungicide, Growth regulator, Macrophomina phaseolina, Trichoderma, Weedicide
Ahemad, M. and Khan, M. S. (2010). Influence of selective herbicides on Plant Growth Promoting traits of Phosphate solubilising Enterobacter asburiae Strain PS2. Res. J. Microbiol., 5 (9): 849-857
Badri, M., Zamani, M. R. and Motallebi, M. (2007). Effect of Plant Growth Regulators on in vitro biological control of Fusarium oxysporum by Trichoderma harzianum (T8). Pak. J. Biol. Sci., 10 (17): 2850-2855
Baker, K. F. and Cook, R. J. (1974). Biological Control of Plant Pathogens, Freeman, San Francisco, Pp. 433
Bandopadhyay, A. and Bandopadhyay, A. K. (2004). Beneficial traits of Plant Growth Promoting Rhizobacteria and fungal antagonist consortium for biological disease management in bast fibre crop. Indian Phytopathol. 57 (3): 356-357
Bandopadhyay, A. K., Bandopadhyay, A. and Majumder, A. (2006). Antagonistic effect of Trichoderma, Gliocladium, Aspergilius, Penicillium and PGPR isolates on highly virulent isolates (R 9) of M. phaseolina. J. Mycopathol. Res., 44: 323-330
Bandopadhyay, A. Bhattacharya, S. K., Bandopadhyay, A. K. and Reddy, M. S. (2009). Abstract on “Beneficial traits of PGPR mediated disease management and growth promotion in jute and Sunnhemp with bioformulation of activated and wild bio control agents” at First Asian PGPR Congress for Sustainable Agriculture, jointly organized by ANGARU, Rajendranagar, A.P (India) & Auburn University, U.S.A ; P4.44, Pp. 97
Benítez, T. Delgado-Jarana, J., Rincón, A. M., Rey M. and Limon, M. C. (1998). Biofungicides: Trichoderma as a biocontrol agent against phytopathogenic fungi. In: Pandalai SG (ed.) Recent research developments in microbiology, vol. 2. Research Signpost, Trivandrum, Pp. 129-150
Benitez, T., Rincon, A. M., Limon, M. C. and Codon, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. Int. Microbiol., 7 (4): 249-260
Bhattacharyya, S. K., Sengupta, C. and Tarafdar, J. (2014). In vitro screening of bio agents from rhizosphere soil against Macrophomina phaseolina and seedling health of jute. J. Mycopathol. Res., 52 (2): 267-272
Chet, I., Inbar, J. and Hadar, I. (1997). Fungal antagonists and mycoparasites. In:Wicklow DT Söderström B (eds.) The Mycota IV: Environmental and microbial relationships. Springer-Verlag, Berlin, Pp. 165-184
De Cal, A., Pascua, S.S. and Melgarejo, P. (1994). In vitro studies on the effects of fungicides on beneficial fungi of peach twig mycoflora. Mycopathologia,126(1):15-20
Djonovic, S., Pozo, M. J., Dangott, L. J., Howell, C. R. and Kenerley, C. M. (2006). Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol. Plant Microbe Interact., 19 (8): 838-853
D?u?niewska. J. (2003). Reaction of fungi of Trichoderma genus to selected abiotic factors. Elec. J. Polish Agr. Uni., 6 (2): 4-8
Dubey, S. C., Suresh, M. and Singh, B. S. (2007). Evaluation of Trichoderma species against Fusarium oxysporum f.sp. ciceris for integrated management of chickpea wilts. Biol. Control., 40: 118-127
Ehteshamul-Haque, S., Zaki, M. J. and Ghaffa, R. (1990). A. Biological control of root rot diseases of okra, sunflower, soybean and mung bean. Pak. J. Bot., 22: 121-124
Gravel, V., Antoun, H. and Tweddell, R. (2007). Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol. Biochem., 39: 1968-1977
Gupta, G. K. and Chauhan, G. S. (2005). Symptoms, Identification and Management of Soybean Diseases. Technical Bulletin, 10. National Research Centre for Soybean, Indore, India, Pp. 92
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. and Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol., 2: 43-56
Hjeljord, L. and Tronsmo, A. (1998). Trichoderma and Gliocladium in biological control: an overview. In: Harman G. E., Kubicek, C. P., editors. Trichoderma and Gliocladium. London: Taylor and Francis, pp. 131-152
Howell, C. R. (2002). Cotton seedling pre-emergence damping-off incited by Rhizopus oryzae and Pythium spp. and its biological control with Trichoderma spp. Phytopathol., 92(2): 177-180
Latore, B. A., Agosin, E., San Martin, R. and Vasquez, G. S. (1997). Effectiveness of conidia of Trichoderma harzianum produced by liquid fermentation against Botrytis bunch rot of table grape in Chile. Crop Prot., 16 (3): 209-214
Locke, J.C., Marois, J.J. and Papavizas, G.C. (1985). Biological control of Fusarium wilt of greenhouse-grown chrysanthemums. Plant Dis., 69: 167-169
Lorito, M., Woo, S. L., Harman, G. E. and Monte, E. (2010). Translational research on Trichoderma: from omics to the field. Annu. Rev. Phytopathol., 48: 395-417
Khan, M. O. and Shahzad, S. (2007). Screening of Trichoderma species for tolerance to fungicides. Pak. J. Bot., 39 (3): 945-951
Meena, P. N., Roy, A., Gotyal, B. S., Mitra, S. and Satpathy, S. (2014). Eco-friendly management of major diseases in jute (Corchorus olitorius L.). J. Appl. & Nat. Sci., 6 (2): 541-544
Monte, E. (2001). Understanding Trichoderma: Between biotechnology and microbial ecology. Int. Microbiol., 4: 1-4
Pandya, U. and Saraf, M. (2010). Application of fungi as a biocontrol agent and their biofertilizer potential in agriculture. J. Adv. Devel. Res., 1 (1): 90-99
Sayyed, R. Z. and Patel, P. R. (2011) Biocontrol potential of siderophore producing heavy metal resistant Alcaligenes sp. and Pseudomonas aeruginosa RZS3 vis-a-vis organophosphorus fungicide. Indian J. Microbiol., 51 (3): 266-272
Roy, A., Roy, S. K., Chakraborty, G. and Sarkar, S. K. (2015). Effect of Biocontrol Agent Consortia for Ecofriendly Management of Stem and Root Rot in Olitorius Jute caused by Macrophomina phaseolina. Int. J. Biores. Sci., 2 (2): 95-100
Srinivas, P. and Ramakrishnan, G. (2002). Use of native microorganisms and commonly recommended fungicides in integrated management of rice seed borne pathogens. Annu. Plant Prot. Sci., 14 (2): 260-264
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)