Exploring possibilities of enhancing water use efficiency in potato: A review
Article Main
Abstract
Climate change threatens the global agriculture sustainability. Among different kinds of abiotic stresses, water stress is the most devastating component which curtails potato crop productivity. Our recent knowledge is limited concerning water stress tolerance and water use efficiency in potato. Many efforts are being made by the scientific community to reduce water use and to produce “more crop per drop”. This review elaborates quantitative and qualitative aspects of multiple stress mechanisms and their regulating system related to present scenario of water use efficiency (WUE) requirements. WUE can only be improved by using multidisciplinary promising research approaches like molecular breeding, high throughput genotyping, multi-gene transfer and bioinformatics applications to unleash the information needed to exploitation of required traits in potato.
Article Details
Article Details
Genomics, Genotype, Proteomics, Stress, Water use efficiency
Ahmad, R., Waraich, E. A., Ashraf, M. Y., Ahmad, S. and Aziz, T. (2013). Does nitrogen fertilization enhance drought tolerance in sunflower: A review. Journal of Plant Nutrition, 37: 942-963
Alva, A. K, Moore, A. D. and Collins, H. P. (2012). Impact of deficit irrigation on tuber yield and quality of potato cultivars. Journal of Crop Improvement, 26: 211-227
Bailey, R. J. (2000). Practical use of soil water measurement in potato production. In: Haverkort, AJ and MacKerron DKL, Management of nitrogen and water in potato production. Wageningen, The Netherlands: Wageningen Presss, Pp. 206-218
Bansal, K. C. and Nagarajan, S. (1986). Leaf water content, stomatal conductance and proline accumulation in leaves of Potato (Solanum tuberosum L) in response to water stress. Indian Journal of Plant Physiology, 29: 397–404
Bhatnagar-Mathur, P., Devi, M. J., Reddy, D. S., Lavanya, M., Vadez, V. and Sharma, K. K. (2007). Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Reports, 26: 2071–2082
Bita, C. E. and Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontier in Plant Science, 4: 273
Bohnert, H. J., Nelson, D. E. and Jensenay R. G. (1995). Adaptations to environmental stresses. Plant Cell, 7: 1099–1111
Borlaug, N. E. (2000). The Green Revolution Revisited and the Road Ahead. Special 30th Anniversary Lecture, Norwegian Nobel Institute, Oslo.
Briggs, L. J. and Shantz, H. J. (1913). The water requirements of plants. II. A review of the literature USA. Deartment Agriculture Bureau. Plant Industry Bulletin, 285: 1–96
Briggs, L. J. and Shantz, H. J. (1914). Relative water requirements of plants. Journal of Agricultural Research, 3 :1–63
Burton, W. G. (1966). The Potato, a Survey of its History and of its factors influencing its yield, nutritive value, quality and storage. 2nd Ed. H. Veeman & Zonen N. V. Wageningen, Holland. Pp. 382
Burton, W. G. (1981). Challenges for stress physiology in potato. American Potato Journal, 58: 3-14
Cheng, Y. J., Deng, X. P., Kwak, S. S., Chen, W. and Eneji, A. E. (2013). Enhanced tolerance of transgenic potato plants expressing choline oxidase in chloroplasts against water stress. Botanical Studies, 54: 30
Chinnusamy, V., Jagendorf, A. and Zhu, J. K. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45: 437-448
Cominelli, E., Galbiati, M., Vavasseur, A., Conti, L., Sala, T. and Vuylsteke, M. (2005). A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Current Biology, 15:1196–1200
Davies, W. J. and Hartung, W. (2004). Has extrapolation from biochemistry to crop functioning worked to sustain plant production under water scarcity? In: Proceedings of the 4th International Crop Science Congress, Sep. 26-Oct. 1, 2004, Brisbane, Australia.
Davies, W. J., Wilkinson, S. and Loveys, B. R. (2002). Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytologist, 153: 449–460
Deblonde, P. M. K. and Ledent, J. F. (2001). Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. European Journal of Agronomy, 14: 31-41
Deguchi, T., Iwama, K., Matsumoto, M. and, Tanigawa J. (2015). Effect of varietal difference in root system on hydraulic conductance in potatoes under different soil water conditions and planting dates. Potato Research, 58: 103–119
Devaux A., Ordinola M. E., Hibon A. and Flores F. A. 2010. El sector papa en la región andina: Diagnóstico y elementos para una visión estratégica (Bolivia, Ecuador y Perú). In: (CIP), I. P. C. (Ed.).
Eisenach, C., Chen, Z. H., Grefen, C. and Blatt, M. R. (2012). The trafficking protein SYP121 of Arabidopsis connect programmed stomatal closure and K+ channel activity with vegetative growth. The Plant Journal, 69: 241–251.
Ekanayake, I. J., De Datta, S. K. and Steponkus, P. L. (1989). Spikelet sterility and flowering response of rice to water stress at anthesis. Annals of Botany, 63: 257-264
El Hafid, R., Smith, D. H., Karrou, M. and Samir, K. (1998). Physiological attributes associated with early-season drought resistance in spring durum wheat cultivars. Canadian Journal of Plant Science, 78: 227–237
Eltayeb, A., Yamamoto, S., Habora, M., Matsukubo, Y., Aono, M., Tsujimoto, H. and Tanaka, K. (2010). Greater protection against oxidative damages imposed by various environmental stresses in transgenic potato with higher level of reduced glutathione. Breeding Science, 60: 101–109
Eltayeb, A., Yamamoto, S., Habora, M., Yin, L., Tsujimoto, H. and Tanaka, K. (2011). Transgenic potato over expressing Arabidopsis cytosolic AtDHAR1 showed higher tolerance to herbicide, drought and salt stresses. Breeding Science, 61: 3–10
Fabeiro, C., Martín de Santa Olalla, F., de Juan, J. A. (2001). Yield and size of deficit irrigated potatoes. Agriculture Water Management, 48: 255-266
Farquhar, G. D., Caemmerer, S., Berry, J. A. (2001). Models of photosynthesis. Plant Physiology, 125: 42–45
Finkel, T. and Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408: 239-47
Garcia, M. N. M., Pais, S. M., TEllez-Inon, M. T. and Capiati, D. A. (2011). Characterization of StPPI1, a proton pump interactor from Solanum tuberosum L. that is upregulated during tuber development and by abiotic stress. Planta, 233: 661–674
Ghasem, H. S., Matthew, R., John, B. and Boyer, J. (2009). Conceptual framework for drought phenotyping during molecular breeding. Trend in Plant Science, 9: 488–496
Goel, D., Singh, A. K., Yadav, V., Babbar, S. B., Murata, N. and Bansal, K. C. (2011). Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. Journal of Plant Physiology, 168: 1286–1294
Guo, B., Zhang, Y., Lee, H., Du, L., Lee, Y., Zhang, J., Chen, S. and Zhu, Z. (2000). The transformation and expression of wheat with Betaine aldehyde dehydrogenase (BADH) gene. Chinese Bulletin of Botany, 42: 279–283
Harris, P. M. (1992). The influence of genotype and water stress on the nitrogen requirement of the potato crop. Conference: Meeting of the Section Physiology of the EAPR. Le Conquet (France). 24-28 Jun 1991. Potato Research, 35(1): 72
Hassanpanah, D. (2010). Evaluation of potato cultivars for resistance against water deficit stress under in vivo conditions. Potato Research, 5: 383-392
He, M., and Dijkstra, F. A. (2014). Drought effect on plant nitrogen and phosphorous: a meta-analysis. New Phytologist, 204: 924-931
Hetherington, A. M. and Woodward, F. I. (2003). The role of stomata in sensing and driving environmental change. Nature, 424: 901–908
Heuer, B. and Nadler, A. (1998). Physiological response of potato plants to soil salinity and water deficit. Plant Science, 137: 43-51
Hu, H., Dai, M., Yao, J., Xiao, B., Li, X. and Zhang, Q. (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceeding of National Academy of Sciences of U.S.A., 103: 12987–12992
Huang, J., Hirji, R., Adam, L., Rozwadowski, K., Hammerlindl, J., Keller, W. and Selvaraj, G. (2000). Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiology, 122: 747–756
Huang, X. Y., Chao, D. Y., Gao, J. P., Zhu, M. Z., Shi, M., Lin, H. X. (2009). A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes & Development, 23: 1805-1817
Iwaki T., Guo L., Ryals J. A., Yasuda S., Shimazaki T., Kikuchi A., Watanabe K. N., Kasuga M., Yamaguchi-Shinozaki, K., Ogawa, T., Ohta, D. (2013). Metabolic profiling of transgenic potato tubers expressing Arabidopsis dehydration response element-binding protein 1A (DREB1A). Journal of Agriculture and Food Chemistry, 61: 893–900
Iwama, K. and Yamaguchi, J. (2006). Abiotic Stresses: In Handbook of potato production, improvement, and postharvest management, ed. J. Gopal and S. M. P Khurana, The Haworth Press.
Jefferies, R. A. (1993). Responses of potato genotypes to drought. I. Expansion of individual leaves and osmotic adjustment. Annals of Applied Biology, 122: 93–104
Jia, G., Zhu, Z., Chang, F. and Li, Y. (2002). Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Reports, 21: 141–146
Jones, H. G. (1992). Plants and microclimate: A quantitative approach to environmental plant physiology, 2nd ed., Cambridge University Press, Cambridge, U. K., Pp. 428
Kaminski, K. P., Korup, K., Andersen, M. N., Sonderkaer, M., Andersen, M. S., Kirk, H. G. and Nielsen, K. L. (2015). Cytosolic glutamine synthetase is important for photosynthetic efficiency and water use efficiency in potato as revealed by high-throughput sequencing QTL analysis. Theoretical and Applied Genetics, 128(11): 2143–2153
Kaminski, K. P., Kørup, K., Kristensen, K., Nielsen, K. L., Liu, F., Topbjerg, H. B., Kirk, H. G. and Andersen, M. N. (2015). Contrasting Water-Use Efficiency (WUE) responses of a potato mapping population and capability of modified ball-berry model to predict stomatal conductance and was measured at different environmental conditions. Journal of Agronomy and Crop Science, 201: 81-94
Kang, S. Z. and Zhang, J. H. (2004). Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency. Journal of Experimental Botany, 55: 2437–2446
Kashyap, P. S. and Panda, R. K. (2003). Effect of irrigation scheduling on potato crop parameters under water stressed conditions. Agriculture Water Management, 59: 49-66
Kathuria, H., Giri, J., Nataraja, K. N., Murata, N., Udaya, K. and Tyagi A. K. (2009). Glycinebetaine induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes. Plant Biotechnology Journal,7:512-526
Khan, M. A., Saravia, D., Munive, S., Lozano, F., Farfan, E., Eyzaguirre, R. and Bonierbale, M. (2015). Multiple QTLs linked to agro-morphological and physiological traits related to drought tolerance in potato plant. Molecular Biology Reports, 33: 1286–1298
Kikuchi, A., Huynh, H. D., Endo, T. and Watanabe, K. (2015). Review of recent transgenic studies on abiotic stress tolerance and future molecular breeding in potato. Breeding Science, 65: 85-102
Kim J., Baek D., Park H., Chun H., Oh D., Lee M., Cha J., Kim W., Kim M. and Chung W. (2013). Overexpression of Arabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced
resistance to water deficit. Molecular Plant, 6: 337–349
Kirda, C., Topcu, S., Kaman, H., Ulger, A. C., Yazici, A., Cetin, M. and Derici, M. R. (2005). Grain yield response and N-fertilizer recovery of maize under deficit irrigation. Field Crops Research, 93: 132-141
Klein, M., Perfus-Barbeoch, L., Frelet, A., Gaedeke, N., Reinhardt, D., Mueller-Roeber, B., Martinoia, E. and Forestier, C. (2003). The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signaling and water use. The Plant Journal, 1: 119–129
Kleinkopf, G. E. and Westermann, D.T. (1981). Predicting nitrogen requirements for optimum potato growth. Proc. Univ. Idaho Winter Commodity School, Pp. 81-84
Knipp, K. and Honermeier, B. (2006). Effect of water stress on proline accumulation of genetically modified potatoes (Solanum tuberosum L.) generating fructans. Journal of Plant Physiology, 163: 392–397
Kumar, A. and Singh, D. P. (1998). Use of physiological indices as a screening technique for drought tolerance in oilseed Brassica species. Annals of Botany, 81: 413–420
Lahlou, O. and Ledent, J. F. (2005). Root mass and depth, stolons and roots formed on stolons in four cultivars of potato under water stress. European Journal of Agronomy, 22: 159-173
Lawson, T., Caemmerer, S. and Baroli, I. (2011). Photosynthesis and stomatal behaviour. Progress in Botany, 72: 265–304
Li, W., Xiong, B., Wang, S., Deng, X., Yin, L., Li, H. (2016) Regulation Effects of Water and Nitrogen on the Source-Sink Relationship in Potato during the Tuber Bulking Stage. PLoS ONE 11(1): e0146877
Li, F., Liang, J., Kang, S. and, Zhang, J. (2007). Benefits of alternate partial root –zone irrigation on growth, water and nitrogen use efficiencies modified by fertilization by fertilization and soil water status in maize. Plant and soil, 295: 279-291
Li, S., Li, F., Wang, J., Zhang, W., Meng, Q., Chen, T. H., Murata, N. and Yang, X. (2011). Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings. Plant, Cell & Environment, 34: 1931–1943
Li, W. X., Oono, Y., Zhu, J., He, X. J., Wu, J. M., Iida, K. (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post transcriptionally to promote drought resistance. Plant Cell, 20: 2238–2251
Li, Z., Zhang, F. and, Kang, S. (2005). Impacts of the controlled roots divded alternative irrigation on water and nutrient use of winter wheat. Transactions of American Society of Agricultural Engineers, 21: 17-21
Liang, J., Zhang, J., Wong, M. H. (1996). Effect of air-filled soil porosity and aeration on the intial and growth of secondary roots of maize (Zea Maize). Plant and soil, 186: 245-254
Liu, F. L., Shahnazari, A., Andersen, M. N., Jacobsen, S. E., Jensen, C. R. (2006). Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency. Journal of Experimental Botany, 57: 3727–3735
Loveys, B., Grant, J., Dry, P. and McCarthy, M. (2001). Progress in the development of partial root zone drying. CSIRO, Plant Industry, University of Adelaide, SARDI.
Masle, J., Gilmore, S. R. and Farquhar, G. D. (2005). The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature, 436: 866–870
McAusland, L., Davey, P. A., Kanwal, N., Baker, N. R. and Lawson, L. (2013). A novel system for spatial and temporal imaging of intrinsic plant water use efficiency. Journal of Experimental Botany, 64: 4993-5007
Mingo, D. M., Theobald, J. C., Bacon, M. A., Davies, W. J. and, Dodd, I. C. (2004). Biomass allocation in tomato (Lycopersicon esculentum) plant’s grown under partial root zone drying: enhancement of root growth. Functional Plant Biology, 31: 971-978
Minhas, J. S., Khurana, S. M. P., Sheshshayee, M. S. and Udayakumar, M. (2003). Potato varieties show genetic variability in water use efficiency based on carbon isotope discrimination. Journal of Indian Potato Association, 30: 193-194
Mohanty, A., Kathuria, H., Ferjani, A., Sakamoto, A., Mohanty, P., Murata, N. and Tyagi, A. (2002). Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theoretical and Applied Genetics, 106: 51–57
Monneveuxa, P., Ramirez, D. A. and Pino, M. T. (2013). Drought tolerance in potato (S. tuberosum L.) Can we learn from drought tolerance research in cereals? Plant Science, 206: 76–86
Morgan, J. M. (1984). Osmoregulation and water stress in higher plants. Annual Review of Plant Physiology, 35: 299–319
Movahedi, S., Tabatabaei, B., Alizade, H., Ghobadi, C., Yamchi, A. and Khaksar, G. (2012). Constitutive expression of Arabidopsis DREB1B in transgenic potato enhances drought and freezing tolerance. Biologia Plantarum, 56: 37–42
Obidiegwu, J. E., Bryan, G. J., Jones, H. G. and Prashar, A. (2015). Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Frontier of Plant Science, 6: 542
Ortiz R. and Watanabe K. N. (2004) Genetic contributions to breeding polyploid crops. Recent Research Development in Genetics & Breeding, 1: 269–286
Park, E., Jekni, Z., Pino, M., Murata, N., Chen, T. (2007). Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant Cell & Environment, 30: 994–1005
Perl, A., Perl-Treves, R., Galili, S., Aviv, D., Shalgi, E., Malkin, S. and Galun, E. (1993). Enhanced oxidative stress defense in transgenic potato expressing tomato Cu, Zn superoxide dismutases. Theoretical and Applied Genetics, 85: 568–576
Pino, M. T., Skinner, J. S., Jeknic, Z., Hayes, P. M., Soeldner, A. H., Thomashow, M. F. and Chen, T. H. H. (2008). Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant Cell & Environment, 31: 393–406
Pino, M. T., Skinner, J. S., Park, E. J., Jeknic, Z., Hayes, P. M., Thomashow, M. F. and Chen, T. H. H. (2007). Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnology, 5: 591–604
Puertolas, J., Ballester, C., Elphinstone, D. and Dodd, I. C.. (2014). Two potato (Solanum tuberosum) varieties differ in drought tolerance due to differences in root growth at depth. Functional Plant Biology, 41: 1107–1118
Puertolas, J., Conesa, M. R., Ballester, C., & Dodd, I. C. (2015). Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying. Journal of Experimental Botany, 66(8): 2325–2334
Rebetzke, G. J., Condon, A. G., Richards, R. A., Farquhar and G. D. (2002). Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Science, 42: 739–745
Rolando, J. L., Ramirez, D. A., Yactayo, W., Monneveux, P. and Quiroz, R. (2015). Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environmental and Experimental Botany, 110: 27-35
Sairam, R. K., Srivastava, G. C. and Saxena, D. C. (2000). Increased antioxidant activity under elevated temperature: a mechanism of heat stress tolerance in wheat genotypes. Biologia Plantarum, 43: 245–251
Saravia, D., Farfán-Vignolo, E. R., Gutiérrez, R. et al. Yield and physiological response of potatoes indicate different strategies to cope with drought stress and nitrogen fertilization. American Journal of Potato Research, (2016) 93: 288
Shahnazari, A., Ahmadi, S. H., Laerke, P. E., Liu, F., Plauborg, F., Jacobsen, S. E., Jensen, C. R. and, Andersen, M. N. (2008). Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes. European Journal of Agronomy, 28: 65-83
Shantz, H. J. and Piemeisel, L. N. (1927). The water requirement of plants at Akron, Colorado Journal of Agricultural Research, 34: 1093–1190
Sharma, S. K., Bolser, D., de Boer, J., Sonderkaer, M., Amoros, W., Carboni, M. F., Bryan, G. J. (2013). Construction of reference chromosome-scale pseudomolecules for potato: integrating the potato genome with genetic and physical maps. G3 Genes Genomes Genet, 3: 2031–2047
Shin, D., Moon, S. J., Han, S., Kim, B. G., Park, S. R., Lee, S. K., Yoon, H. J., Lee, H. E., Kwon, H. B., Baek, D., Yi, B. Y. and Byun, M. O. (2011). Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor increases drought tolerance. Plant Physiology, 155: 421–432
Sivamani, E., Bahieldinl, A., Wraith, J. M, Niem, T. A., Dyer, W. E., David, T. H. and Qu, R. D. (2000). Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barely HVA1 gene. Plant Science, 155: 1–9
Stiller, I., Dulai, S., Kondrak, M., Tarnai, R., Szabo, L.L., Toldi, O. and Banfalvi, Z. (2008). Effects of drought on water content and photosynthetic parameters in potato plants expressing the trehalose-6-phosphate synthase gene of Saccharomyces Cerevisiae. Planta, 227: 299–308
Stoll, M., Loveys, B. and Dry, P. (2000). Hormonal changes induced by partial root zone drying of irrigated grapevine. Journal of Experimental Botany, 51: 1627–1634
Sulpice, R., Tsukaya, H., Nonaka, H., Mustardy, L., Chen, T. and Murata, N. (2003). Enhanced formation of flowers in salt stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. The Plant Journal, 36: 165–176
Sunkar, R., Kapoor, A. and Zhu, J. K. (2006). Post transcriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down regulation of miR398 and important for oxidative stress tolerance. Plant Cell, 18: 2051-2065
Szabados, L., and Savoure, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15, 89–97
Tangpremsri, T., Fukai, S. and Fischer, K. S. (1995). Growth and yield of sorghum lines extracted from a population for differences in osmotic adjustment. Australien Journal of Agriculture Research, 46: 61–74
Topbjerg H. B., Kaminski, K. P., Markussen, B., Kørup, K., Nielsen, K. L., Kirk, H. G., Andersen, M. N., Liu, F. (2014). Physiological factors affecting intrinsic water use efficiency of potato clones within a dihaploid mapping population under well-watered and drought-stressed conditions, Scientia Horticulture, 178: 61–69
Tourneux, C., Devaux, A., Camacho, M. R., Mamani, P. and Ledent, J. F. (2003). Effects of water shortage on six potato cultivars in the highlands of Bolivia (I): morphological parameters, growth and yield. Agronomie, 23: 169-179
Tuberosa, R. and Salvi, S. (2006). Genomics approaches to improve drought tolerance in crops. Trends in Plant Science, 11: 405–412
Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M. and Hara, N. (2013). Control of root system architecture by DEEPER ROOTING1 increases rice yield under drought conditions. Nature Genetics, 45: 1097-1102
Vankova, R., Dobra, J., and Storchova, H. (2012). Recovery from drought stress in tobacco: an active process associated with the reversal of senescence in some plant parts and the sacrifice of others. Plant Signaling & Behavior, 7: 19–21
Wang, H., Wang, H., Shao, H., & Tang, X. (2016). Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology. Frontiers in Plant Science, 7: 67
Wang, Y., Hills, A. and Blatt, M. R. (2014). Systems analysis of guard cell membrane transport for enhanced stomatal dynamics and water use efficiency. Plant Physiology, 164: 1593–1599
Wegener, C. B. and Jansen, G. (2013). Antioxidants in different potato genotypes: effect of drought and wounding stress. Agriculture, 3: 131–146
Willmer, C. and Fricker, M. (1996). Stomata. 2nd edn. London: Chapman and Hall. New York, 231–278
WWAP (United Nations World Water Assessment Programme). (2015). The United Nations World Water Development Report 2015: Water for a Sustainable World. Paris, UNESCO.
Zhang Z, Shao, H., Xu, P., Hu, M., Song, W. and Hu, X. (2009). Full Length Research Paper Focus on agricultural biotechnology: Prospective for bio-water saving theories and their applications in the semi-arid and arid areas. African Journal of Biotechnology 8(12): 2779-2789
Zhang, N., Ci, H., Li, L., Yang, T., Zhang, C. and Wang, D. (2009). Enhanced drought tolerance of potato with introduced BADH gene. Acta Agronomica Sinca, 35: 1146–1150
Zhang, N., Si, H., Wen, G., Du, H., Liu, B. and Wang, D. (2011). Enhanced drought and salinity tolerance in transgenic potato plants with a BADH gene from spinach. Plant Biotechnology Reports, 5: 71–77
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)