##plugins.themes.bootstrap3.article.main##

Inderpal Singh H. S. Thind Sandeep Sharma Yadvinder Singh Mohammad Amin Bhat

Abstract

Ashes from agricultural biomass in agro-based industries have been found to have most of the plant nutrients except nitrogen and sulphur but are treated as waste material. The present study was conducted to evaluate the potential of biomass ashes as source of P and their effect on bioavailability of micronutrients in wheat crop. We conducted the pot experiment at glass house of the Department of Soil Science, Punjab Agricultural University, Ludhiana, India. The experiment consisted of combinations of four P sources [bagasse ash (BA), rice husk ash (RHA), rice straw ash (RSA), fertilizer P (Fert-P)] supplying P at three levels (10, 20 and 30 µg g-1) along with one zero-P control. This experiment was laid out in completely randomized design (CRD) having three replications. Application of P through RSA produced significantly higher grain yield (14.3 g pot-1) than BA (12.8 g pot-1) and RHA (12.9 g pot-1) but statistically at par with Fert-P (13.5 g pot-1). Grain Zn content decreased maximum than other micronutrients with application of P from all sources, hence maximum increased P/Zn ratio. Phosphorus applied from all the biomass ashes significantly increased biomass and yield over control. With increase in P application, micronutrients content in grain was significantly decreased, hence decreased bioavailability of micronutrients in wheat grain.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Bagasse ash, Micronutrients, Phosphorus fractions, Rice husk ash, Rice straw ash

References
Adjei-Nsiah, S. and Obeng, C. B. (2013). Effect of palm bunch ash application on soil and plant nutrient
composition, growth and yield of garden eggs, pepper and okra. Inter. J. Pl. Soil. Sci., 2: 1-15
Akanbi, O. S., Ojeniyi, S. O. and Famaye, A. O. (2014). Soil nutrients and cocoa seedling performance as influenced by plant residue ash and NPK fertilizer addition on a depleted soil in Ibadan, south western, Nigeria. Int. Res. J. Agric. Sci. Soil. Sci., 4: 1-4
Ayeni, L. S., Adetunji, M. T., Ojeniyi, S. O., Ewulo, B. S. and Adeyemo, A. J. (2008). Comparative and
cumulative effect of cocoa pod husk ash and poultry manure on soil and maize nutrient contents and yield. Am-Eu. J. Sustain. Agric., 2: 92-97
Bachmann, S. and Eichler-Lobermann, B. (2010). Soil
phosphorus pools as affected by application of poultry litter ash in combination with catch crop cultivation. Commun. Soil. Sci. Pl. Anal., 41: 1098-1111
Beri, V. and Gupta, A. P. (2003). Recycling of rural and urban organic wastes: a review. Department of Soil Science, Punjab Agricultural University, Ludhiana, India.
Bohn, L., Meyer, A. and Rasmussen, S. (2008). Phytate: impact on environment and human nutrition. A
challenge for molecular breeding. J. Zhejiang. Univ. Sci., 9: 165-191
Bolan, N. S., Adriano, D. C. and Mahimairaja, S. (2004). Distribution and bioavailability of trace elements in livestock and poultry manure byproducts. Crit. Rev. Environ. Sci. Technol., 34: 291-338
Cakmak, I. (2008). Enrichment of cereal grains with zinc: agronomic or genetic biofortification. Pl. Soil, 302: 1-17
Demeyer, A., Nkana, J. C. V. and Verloo, M. G. (2001). Characteristics of wood ash and influence on soil
properties and nutrient uptake: an overview. Bioresour. Tech., 77: 287-295
Fageria, N. K. (2014). Yield and yield components and
phosphorus use efficiency of lowland rice genotypes. J. Pl. Nutr., 37: 979-989
Fan, M. S., Zhao, F. J., Fairweathertait, S., Poulton, P., Dunham, S. and McGrath, S. (2008). Evidence of
decreasing mineral density in wheat grain over the last 160 years. J. Trace. Elem. Med. Biol., 22: 315-324
Giovannini, G. S., Benvenuti, S., Lucchesi and Giachetti, M. (1993). Soil Biota, Nutrient Cycling and Farming
Systems. Lewis Publ. Boca Raton, FL.
Gupta, R. K., Amandeep-Singh, Yadvinder-Singh, Thind, H. S., Bijay-Singh and Varinderpal-Singh. (2013). Effect of rice husk ash and bagasse ash on inorganic phosphorus fractions and available phosphorus in an alkaline soil under rice (Oryza sativa L.) wheat (Triticum aestivum L.) cropping system. J. Indian. Soc. Soil. Sci., 61: 258-260
Imtiaz, M., Alloway, B. J., Memon, M. Y., Khan, P., Siddiqui, S., Aslam, M. and Shah, S. K. H. (2006). Zinc tolerance in wheat cultivars as affected by varying levels of
phosphorus. Commun. Soil. Sci. Pl. Anal., 37: 1689-1702
Izsaki, Z. (2014). Effects of Phosphorus supplies on the
nutritional status of maize (Zea mays L.). Commun. Soil. Sci. Pl. Anal., 45: 516-529
Jackson, M. L. (1973). Soil Chemical Analysis. Prentice Hall of India, Private Limited, New Delhi Pp. 38-56
Jamil, M., Qasim, M., Umar, M. and Abdus-Subhan. (2004). Impact of organic wastes (bagasse ash) on the yield of wheat in calcareous soil. Int. J. Agri. Biol., 6: 468-470
Kutman, U. B., Yildiz, B. and Cakmak, I. (2011). Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. J. Cereal. Sci.. 53: 118-125
Ladha, J. K., Dawe, D., Pathak, H., Padre, A. T., Yadav, R. L., Bijay-Singh, Yadwinder-Singh, Singh, P. and Kundu, A. L. (2003). How extensive are yield declines in long-term rice-wheat experiments in Asia. Field. Crops. Res., 81: 159-180.
Ladha, J. K., Pathak, H., Krupnik, T. J., Six, J. and Vankessel, C. (2005). Efficiency of fertilizer nitrogen in cereal production: retrospect and prospects. Adv. Agron. 87: 85-156.
Lopez, R., Padilla, E., Bachmann, S. and Eichler-Loebermann, B. (2009). Effects of biomass ashes on plant nutrition in tropical and temperate regions. J. Agric. Rural. Develop. Tropic. Subtropic. 110: 51-60.
Majeed, M. A., Ahmad, R., Tahir, M., Tanveer, A. and Ahmad, M. (2014). Effect of phosphorus fertilizer sources and rates on growth and yield of wheat (Triticum aestivum L.). Asian. J. Agric. Biol. 2: 14-19.
Mehla, D. S., Singh, J. P., Sekhon, K. S., Sihag, D. and Bhardwaj, K. K. (2006). Long-term effects of inorganic and organic inputs on yield and soil fertility in rice-wheat cropping system in India. In: Proc.18th World Congress of Soil Science. Philadelphia, Pennsylvania, USA.
Memon, K. S. and Puno, H. K. (2005). Effect of different nitrogen and phosphorus levels on the yield and yield components of wheat variety Pavan. Indus. J. Pl. Sci. 4: 273-277.
Mitchell, C. C. and Black, E. D. (1997). Land application of boiler wood ash in the southeastern United States., pp. 201-224.
Mozaffari, M., Russelle, M. P. and Rosen, C. J. (2002). Nutrient supply and neutralizing value of alfalfa stem gasification ash. Soil. Sci. Soc. Am. J. 66: 171-178.
Murphy, K. M., Reeves, P. G., Jones, S. S. (2008). Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica. 163: 381-390
Njoku, C. and Mbah, N. C. (2012). Effect of burnt and unburnt rice husk dust on maize yield and soil physico-chemical properties of an Ultisol in Nigeria. Biol. Agric. Hortic., 28: 49-60
Nwite, J. C., Igwe, C. A. and Obalum, S. E. (2011). The contributions of different ash sources to the improvement in properties of a degraded ultisol and maize production in southeastern Nigeria. Am-Eu. J. Sustain. Agric., 5: 34-41
Okon, P. B., Ogeh, J. S. and Amalu, U. C. (2005). Effect of rice husk ash and phosphorus on some properties of acid sands and yield of okra. Common. Soil. Sci. Pl. Anal., 36: 833-845
Olsen, S. R., Cole, C. V., Watanabe, F. S. and Dean, L. A. (1954). Estimation of available phosphorous in soils by extraction with sodium bicarbonate. USDA Cir 939, 19.
Onwuka, M. I., Osodeke, V. K. and Okola, N. A. (2007). Amelioration of soil acidity using cocoa husk ash for maize production in Umudike area of South East Nigeria. Trop. Subtrop. Agroecosyst., 7: 41-45
Pareek. (2004). Effect of phosphorus, sulphur and zinc on growth, yield and nutrient uptake of wheat (Triticum aestivum L.). Indian. J. Agron., 49: 160-162
Patterson, S. J., Acharya, S. N. and Thomas, J. E. (2004). Integrated soil and crop management: barley biomass and grain yield and canola seed yield response to land application of wood ash. Agron. J., 96: 971-977
Prakash, N. B., Nagaraj, H., Guruswamy, K. T., Vishwanatha, B. N., Narayanswamy, C., Gowda, N. A. J., Vasuki, N. and Siddaramappa, R. (2007). Rice hull ash as a source of silicon and phosphatic fertilizers: effect on growth and yield of rice in coastal Karnataka, India. Int. Rice. Res., 32: 34-36
Priyadharshini, J. and Seran, T. H. (2009). Paddy husk ash as a source of potassium for growth and yield of cowpea (Vigna unguiculata L.). J. Agric. Sci., 4: 67-76
Ryan, M. H., McInerney, J. K., Record, I. R. and Angus, J. F. (2008). Zinc bioavailability in wheat grain in relation to phosphorus fertilizer, crop sequence and mycorrhizal fungi. J. Sci. Food. Agr., 88: 1208-1216
Saarsalmi, A., Malkonen, E. and Piirainen, S. (2001). Effects of wood ash fertilization on forest soil chemical properties. Silva. Fennica., 35: 355-368
Sammauria, R. and Yadav, R. S. (2010). Performance of fenugreek-pearlmillet system as influenced by phosphorus and zinc application to fenugreek. Ind. J. Agron., 55: 197-202
Schiemenz, K. and Eichler-Loebermann, B. (2010). Biomass ashes and their phosphorus fertilizing effect on different crops. Nutr. Cycl. Agroecosyst., 87: 471-482
Sihag, D., Singh, J. P., Mehla, D. S. and Bhardwaj, K. K. (2005). Effect of integrated use of inorganic fertilizers and organic materials on the distribution of different forms of nitrogen and phosphorus in soil. J. Indian. Soc. Soil. Sci., 53: 80-84
Stukenholtz, D. D., Olsen, R. J., Gogan, G. and Olson, R. A. (1966). On the mechanism of phosphorus-zinc interaction in corn nutrition. Soil. Sci. Soc. Am. J., 30: 759-763
Talashilkar, S. C. and Chavan, A. S. (1996). Effect of rice hull ash on yield and uptake of silicon and phosphorus by rice cultivars at different growth stages. J. Indian. Soc. Soil. Sci., 44: 340-342
Thind, H. S., Yadvinder-Singh, Bijay-Singh, Varinderpal-Singh, Sharma, S., Vashistha, M. and Singh, G. (2012). Land application of rice husk ash, bagasse ash and coal fly ash: effects on crop productivity and nutrient uptake in rice-wheat system on alkaline loamy sand. Field. Crops. Res., 135: 137-144
Vance, E. D. (1996). Land application of wood-fired and combustion boiler ashes: an overview. J. Environ. Qual., 25: 937-944
Yadvinder-Singh, Gupta, R. K., Thind, H. S., Bijay-Singh, Varinderpal-Singh, Gurpreet-Singh, Jagmohan-Singh and Ladha, J. K. (2009). Poultry litter as a nitrogen and phosphorus source for the rice-wheat cropping system. Biol. Fertic. Soils., 45: 701-710
Zhang, Y., Deng, Y., Chen, R., Cui, Z., Chen, X., Yost, R., Zhang, F. and Zou, C. (2012). The reduction in zinc concentration of wheat grain upon increased phosphorus-fertilization and its mitigation by foliar zinc
application. Pl. Soil., 361: 143-152
Zhang, Y. Q., Shi, R. L., Karim, M. R., Zhang, F. S. and Zou, C. Q. (2010). Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application. J. Agric. Food. Chem., 58: 12268-12274
Section
Research Articles

How to Cite

Phosphorus fertilizing potential of biomass ashes and their effect on bioavailability of micronutrients in wheat (Triticum aestivum. L). (2017). Journal of Applied and Natural Science, 9(2), 744-753. https://doi.org/10.31018/jans.v9i2.1267