Influence of AM fungi and its associated bacteria on growth promotion and nutrient acquisition in grafted sapota seedling production
Article Main
Abstract
A study was undertaken to know the effect of co-inoculation of Arbuscular Mycorrhizal (AM) fungi and its associated bacteria on enhancing AM root colonization, growth promotion and nutrient acquisition in grafted sapota plants. The best mycorrhiza associated bacteria i.e. Pseudomonas putida (HM590707) isolated from Funneliformis mosseae spore was evaluated along with AM fungi for growth promotion and AM fungal colonization in grafted sapota plants. The combined application of P. putida along with AM fungi significantly increased plant height (39.67 %), stem girth (3.2 cm), total biomass (66.8 g plant-1), AM root colonization (73.4 %)and plant nutrient concentrations viz., N (2.52 %), P (0.18 %), K (2.90 %), Fe (428.4 ppm) and Zn (21.40 ppm) as compared to uninoculated control. This finding clearly demonstrated that grafted sapota plants can be successfully established by combined inoculation of AM fungi and its associated bacteria which have a greater impact on healthy grafted plants.
Article Details
Article Details
Arbuscular Mycorrhizal fungi, Grafted sapota plants, Mycorrhiza associated bacteria
Abbaspour, H. (2016). Contributions of Arbuscular Mycorrhizal Fungi to Growth, Biomass and Nutrient Status of Pistachio Seedlings under Saline Conditions.Journal of Nuts, 7(1): 67-74
Artursson, V., Finlay, R. D. and Jansson, J. K. (2006), Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. EnvironmentalMicrobioogyl, 8(1):1–10
Barea, J. M., Azcon-Aguilar, C. and Azcon, R. (1997). Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soil-plant systems. In: Multitrophic interactions in terrestrial systems. A. C. Gange and V. K. Brown (eds). Oxford (UK): Blackwell Science, Pp. 65-77
Bharadwaj, D. P. (2007). The plant - arbuscular mycorrhizal fungi – bacteria – pathogen system.Multifunctional role of AMF spore – associatedbacteria. Ph.D. thesis, Swedish University.
Bharadwaj, D. P., Alstrom, S. and Lundquist P. (2011). Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions. Mycorrhiza, 56:720-726
Bonfante, P. and Anca, I. A. (2009). Plants, Mycorrhizal fungi, and bacteria: A network of interactions. Annual Review of Microbiology, 63: 363-383
Cely, M. V. T., de Oliveira, A. G., de Freitas, V. F., de Luca, M. B., Barazetti, A. R., dos Santos, I. M. O.,Gionco, B., Garcia, G. V., Prete, C. E. C. and Andrade, G. (2016). Inoculant of Arbuscular Mycorrhizal Fungi (Rhizophagusclarus) increase yield of Soybean and Cotton under field conditions. Frontiers in Microbiology, 7:720. doi:10.3389/fmicb.2016.00720.
Chiquito-Contreras, R.G.F., Osorio-Acosta, E., García-Pérez, J., Villanueva-Jiménez, A.R., Zulueta-Rodríguez, D.G. and Castillo-Rocha. (2012). Bio-fertilization with rhizobacteria and a consortium of arbuscular mycorrhizal fungi in citrus rootstocks. Tropical Subtropical Agroecosystem, (15)2: 72-81
De Souza, R., Ambrosini, A. and Passaglia, L. M. P. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4):401–419. doi:10.1590/S1415-475738420150053.
de Boer, W., Folman, L.B., Summerbell, R.C. and Boddy, L. (2005), Living in a fungal world: Impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews, 29:795-811
Devachandra, N., Patil, C.P., Patil, P.B., Swamy, G.S.K. and Durgannavar, M.P. (2008). Synergistic effects of AMF and bioformulations on softwood grafting in jamun (SyzygiumcuminiiSkeels). Mycorrhiza News, 20(2):12-17
Dimkpa, C., Weinand, T. and Asch, F. (2009). Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environment, 32:1682–1694
Garbaye, J. (1994). Mycorrhiza helper bacteria: A new dimension to the mycorrhizal symbiosis. New Phytologist, 128:197-210
Gerdemann, J.W. and Nicolson, T.H. (1963). Spore of mycorrhizal endogone species extracted from soil by wet sieving and decanting. British Mycological Society, 46: 234-244.
Glick, B. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 1–15.
Gomez, K.A. and Gomez, A.A. (1984). Statistical procedures for agricultural research. 2nd ed. New York: John Wiley & Sons.
Gryndler, M., Hrselova, H. and Striteska, D. (2000). Effect of soil bacteria on hyphal growth of the arbuscular mycorrhizal fungus Glomus claroideum. Folia Microbiologica, 45: 545-551
Hildebrandt, U., Ouziad, F., Marner, F. J. and Bothe, H. (2006). The bacterium Paenibacillusvalidus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiology Letters, 254: 258-267
Humphries, E. C. (1956), Mineral composition and ash analysis. In: Modern Methods of Plant Analysis. Vol.I. K. Peach and M.V. Tracey (eds.). Springer-Verlag, Berlin Pp. 468-502
Jackson, M. C. (1973). Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd., New Delhi. 103.
Jacobsen, I., Abbott, L. K. and Robson, A. (1992). External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trofoluimsubterraneum L. I. spread of hyphae and phosphorus inflow into roots. New phytologist, 120: 371-380
Jeffries P. (1987). Use of mycorrhiza in agriculture. Critical Reviews in Biotechnology, 5: 319-357.
Kloepper, J. W., Leong, J. and Schroth, M. N. (1980). Pseudomonassiderophores: A mechanism explaining disease suppressive soils. Current Microbiology, 4: 317-
320.
Lagrange, H., Jay-Allgmand, C. and Lapeyrie, F. (2001). Rutin, the phenolglycoside from eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentration. New Phytology, 149: 349–355.
Nazir, R., Warmink, J. A., Boersma, H. and Van Elsas, J. D. (2010). Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiology Ecology, 71: 169-185.
Panneerselvam, P., Saritha, B., Sukhada Mohandas, Upreti, K. K., Poovarasan, S., Sulladmath, V. V. and Venugopalan, V. (2013). Effect of mycorrhiza associated bacteria on enhancing colonization and sporulation of Glomus mosseae and growth promotion in sapota (ManilkaraAchras (Mill.) Forsberg) seedlings. Biological Agriculture and Horticulture, 29(2):118-131
Panneerselvam, P., Sukhada, M., Saritha, B., Upreti, K. K., Poovarasan, Monnappa, A. and Sulladmath, V.V. (2012). Glomus mosseae associated bacteria and their influence on stimulation of mycorrhizal colonization, sporulation, and growth promotion in guava (Psidiumguajava L.) seedlings. Biological Agriculture and Horticulture, 28: 267-279
Patil, P. B. and Patil, C. P. (2007). Mycorrhizal Biotechnology for increasing growth and productivity of fruit plants. In: The Mycorrhizae: Diversity, Ecology and Applications Pp. 57-86
Phillips, J. M. and Hayman, D. S. (1970). Improved process for clearing roots and staining parasite and vesicular-arbuscular mycorrhizal fungi for rapid assessment for infection. Transactions of the British Mycological Society, 55: 158-166
Pivato, B., Gamalero, E., Lemanceau, P. and Berta, G. (2008). Colonization of adventitious roots of Medicagotruncatula by Pseudomonas fluorescens C7R12 as affected by arbuscular mycorrhiza. FEMS Microbiology Letters, 289:173-180
Salimpour, S., Khavazi, K., Nadian, H., Besharati, H. and Miransari, M. (2010). Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Australian Journal of Crop Science, (in press).
Schenck, N. C. and Perez, Y. (1990). Manual for identification of VA mycorrhizal fungi. In: INVAM, N.C. Schenck and Y.Perez (eds), University of Florida, Gainesville, USA, 241.
Selvakumar, G., Krishnamoorthy, R., Kim, K and Sa, T. M. (2016). Genetic Diversity and Association Characters of Bacteria Isolated from Arbuscular Mycorrhizal Fungal Spore Walls. PLoS ONE, 11(8): e0160356. doi:10.1371/journal.pone.0160356.
Shamshiri, M. H., Usha, K. and Bhupinder, S. (2012). Growth and nutrient uptake responses of kinnow to vesicular arbuscular mycorrhizae. ISRN Agronomy, doi: 10.5402/2012/535846.
Statistical Analysis System. (2008). Statistical analysis system version 9.2., Cary (NC): SAS Institute.
Sukhada, M., Poovarasan, S., Paneerselvam, P., Saritha, B., Upreti, K. K., Ranveer Kamal and Sita, T. (2013). Guava (Psidiumguajava L.) rhizosphere Glomus mosseae spores harbor actinomycetes with growth promoting and antifungal attributes. Scientia Horticulturae, 150:371-376
Thonar, C., Schnepf, A., Frossard, E., Roose, T. and Jansa, J. (2011), Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant Soil, 339:231–245. doi: 10.1007/s11104-010-0571-3
Walley, F. L. and Germida, J. J. (1996). Failure to decontaminate Glomus clarum NT4 spores is due to spore wall-associated bacteria. Mycorrhiza, 6: 43-49
Xie, Z.P. (1995). Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and non nodulating soybeans, Plant Physiology, 108:1519-1525
Zhang, H., Liu, Z., Chen, H. and Tang, M. (2016). Symbiosis of Arbuscular Mycorrhizal Fungi and Robiniapseudoacacia L. improves root tensile strength and soil aggregate stability. PLoS ONE, 11(4): e0153378. doi:10.1371/journal.pone.0153378.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)