##plugins.themes.bootstrap3.article.main##

Sarwan Kumar

Abstract

The genus Brassica includes economically important oilseed and vegetable plants. A number of insect pests are known to infest these crops and cause significant losses in yield. The plants in the family Brassicaceae have multiple defense mechanisms to overcome or reduce the damage by these pests including defensive biochemicals. These Plant Secondary Metabolites (PSMs) involve myrosinase-glucosinolate system, different volatile com-pounds, lectins, phytoalexins and phytoanticipins. While some of the compounds are always present in the plant system, the others are synthesized after herbivore attack. These compounds can either directly protect the plant by having effect(s) on insects’ biology/behaviour or indirectly by attracting the natural enemies of the pests. Because of these secondary compounds, Brassicas have the potential to be used in pest management such as biofumigation against soil pests, as trap crops and cover crops and hence, can be a part of push-pull strategy. An attempt has been made to review these compounds in Brassicas, their role in defense against insects and potential in pest management.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

Biocontrol, Biofumigation, Brassica, Defense, Plant secondary metabolites

References
Agarwala, B.K. and Datta, N. (1999). Life history response of mustard aphid Lipaphis erysimi to phonological changes in its host. J. Biosci., 24: 224-231
Agrawal, A.A. (1998). Induced responses to herbivory and increased plant performance. Sci., 279:1201-1202
Agrawal, A.A. (1999a). Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness. Ecol., 80: 1713-1723
Agrawal, A.A. (1999b). Induced plant defense: evolution of induction and adaptive phenotypic plasticity. In: Agrawal, A.A., Tuzun, S. and Bent, L. (eds.) Inducible plant defenses against pathogens and herbivores: Biochemistry, ecology and agriculture. American Phytopathological Society Press, St. Paul, MN, pp. 251-68
Agrawal, A.A. (2000a). Benefits and costs of induced responses to herbivory in Lepidium virginicum (Brassicaceae). Ecol., 81: 1804-13
Agrawal, A.A. (2000b). Specificity of induced resistance in wild radish: causes and consequences for two specialist and two generalist caterpillars. Oikos, 89: 493-500
Agrawal, A.A. (2006). Macroevolution of plant defense strategies. Trends Ecol Environ, 22 (2): 103-109
Agrawal, A.A. and Kurashige, N.S. (2003). A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J. Chem. Ecol., 29: 1403-1415
Ahman, I. (1986). Toxicities of host secondary compounds to eggs of the Brassica specialist Dasineura brassicae. J. Chem. Ecol., 12: 1481-88
AICRP, (2011). All India Coordinated Research Project on Rapeseed-Mustard. Proceedings of 18th Annual Group Meeting of Rapeseed Mustard Research Workers. Aug 05-07, 2011, Assam Agricultural University Khanapara Campus, Guwahati, pp. Ento 1-4.
Andreasson, E., Jorgensen, L.B., Hoglund, A.S., Rask, L. and Meijer, J. (2001). Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus. Plant Physiol., 127: 1750-63
Atri, C., Kumar, B., Kumar, H., Kumar, S., Sharma, S. and Banga, S.S. (2012). Development and characterization of Brassica juncea – fruticulosa introgression lines exhibiting resistance to mustard aphid, Lipaphis erysimi (Kalt.). BMC Genet., 13: 104. doi: 10.1186/1471-2156-13-104
Banks, J.E. (1998). The scale of landscape fragmentation affects herbivore response to vegetation heterogeneity. Oecologia, 117: 239-46
Barker, A., Molotsane, R., Muller, C., Schaffner, U. and Stadler, E. (2006). Chemosensory and behavioural responses of the turnip sawfly, Athalia rosae, to glucosinolates and isothiocyanates. Chemoecol., 16:209-18
Bartlet, E., Kiddle, G. and Williams, I. (1999). Wound-induced increase in the glucosinolate content of oilseed rape and their effect on subsequent herbivory by a specialist. Entomol. exp. Appl., 91: 163-67
Bellostas, N., Sorensen, A.D., Sorensen, J.C., Sorensen, H., Sorensen, M.D., Gupta, S.K. and Kader, J.C. (2007). Genetic variation and metabolism of glucosinolates. Adv. Bot. Res., 45:369-415
Bhalla, S., Kapur, M.L., Verma, B.R. and Singh, R. (1997). An unusual abundance of cabbage butterfly, Pieris brassicae (Linnaeus) on various Brassica species in the environs of Delhi and screening for locating sources of resistance among different cultivars. J. entomol. Res., 21: 147-51
Birkett, M.A., Campbell, C.A.M., Chamberlain, K., Guerrieri, E., Hick, A.J., Martin, J.L., Matthes, M., Napier, J.A., Pattersson, J., Pickett, J.A., Poppy, G.M., Pow, E.M., Pye, B.J., Smart, L.E., Wadhams, G.H., Wadhams, L.J. and Woodcock, C.M. (2000). New roles for cis-jasmone as an insect semiochemical and in plant defense. PNAS (USA), 97: 9329-34
Blande, J., Pickett, J. and Poppy, G. (2007). A comparison of semiochemically mediated interactions involving specialist and generalist Brassica-feeding aphids and the braconid parasitoid Diaeretiella rapae. J. Chem. Ecol., 33: 767-79
Bones, A.M. and Rossiter, J.T. (1996). The myrosinase-glucosinolate system, its organization and biochemistry. Physiologia Plantarum, 97:194-208
Bones, A.M. and Rossiter, J.T. (2006). The enzymic and chemically induced decomposition of glucosinolates. Phytochem., 67: 1053-67
Bones, A.M., Thangstad, O.P., Haugen, O. and Espevik, T. (1991). Fate of myrosin cells – Characterization of monoclonal antibodies against myrosinase. J. exp. Bot., 42:1541-49
Bridges, M., Jones, A.M.E., Bones, A.M., Hodgson, C., Cole, R., Bartlet, E., Wallsgrove, R., Karapapa, V.K., Watts, N. and Rossiter, J.T. (2002). Spatial organization of the glucosinolate-myrosinase system in Brassica specialist aphids is similar to that of the host plant. Proc. Royal Soc. London B, 269: 187-91
Buckles, D., Triomphe, B. and Sain, G. (1998). Cover crops in hillside agriculture. Farmer innovation with Mucuna. International Maize and Wheat Improvement Centre, Mexico. Available at http://www.idrc.ca/openebooks/ 269-4
Bukovinszky, T., Potting, R.P.J., Clough, Y. and Vet, L.E.M. (2005). The role of pre- and post-alighting detection mechanisms in the responses to patch size by specialist herbivores. Oikos, 109: 435-46
Capinera, J.L. (2004). Cabbageworm, Pieris rapae (Linnaeus) (Lepidoptera: Pieridae). Encyclopedia of Entomology, Kluwer, Dordrecht, The Netherlands. pp. 444-45
Charleston, D.S. and Kfir, R. (2000). The possibility of using India mustard, Brassica juncea, as a trap crop for the diamondback moth, Plutella xylostella in South Africa. Crop Prot., 19: 455-60
Chattopadhyay, C., Agrawal, R., Kumar, A., Singh, Y.P., Roy, S.K., Khan, S.A., Bhar, L.M., Chakravarthy, N.V.K., Srivastava, A., Patel, B.S., Srivastava, B., Singh, C.P. and Mehta, S.C. (2005). Forecasting of Lipaphis erysimi on oilseed Brassicas in India – a case study. Crop Prot., 24: 1042-53
Clossais-Bernard, N. and Larher, F. (1991). Physiological role of glucosinolates in Brassica napus: Concentration and distribution pattern of glucosinolates among plant organs during a complete life cycle. J. Sci. Food Agric., 56: 25-38
Cole, R.A. (1994a). Locating a resistance mechanism to the cabbage aphid in two wild Brassicas. Entomol. exp. Appl., 71: 23-31
Cole, R.A. (1994b). Isolation of a chitin binding lectin, with insecticidal activity in chemically defined synthetic diets, from two wild brassica species with resistance to cabbage aphid, Brevicoryne brassicae. Entomol. exp. Appl., 72: 181-87
Cole, R.A. (1997). Comparison of feeding behaviour of two Brassica pests Brevicoryne brassicae and Myzus persicae on wild and cultivated Brassica species. Entomol. exp. Appl., 85: 135-43
Damodaram, T. and Hegde, D. M. (2002). Oilseeds situation: A Statistical Compendium 2002, Directorate of Oilseeds Research, Hyderabad 500 030, India, pp. 471
David, W.A.L. and Gardiner, B.O. (1966). Mustard oil glucosides as feeding stimulants for Pieris brassicae larvae in semi-synthetic diet. Entomol. exp. Appl., 9: 247-55
Dawson, G.W., Griffiths, D.C., Merritt, L.A., Mudd, A., Pickett, J.A., Wadhams, L.J. and Wookcock, C.M. (1990). Aphid semiochemicals – A review and recent advances in the sex pheromone. J. Chem. Ecol., 16: 3019-30
Dawson, G.W., Griffiths, D.C., Pickett, J.A., Wadhams, L.J. and Woodcock, C.M. (1987). Plant derived synergists of alarm pheromone from turnip aphid, Lipaphis (Hyadaphis) erysimi. (Homoptera: Aphididae). J. Chem. Ecol., 13:1663-71
Dilawari, V.K. and Atwal, A.S. (1987). Effects of cruciferous glucosinolates on probing pattern and feed uptake by mustard aphid, Lipaphis erysimi (Kalt.). Proc. Indian Acad. Sci. (Animal Sciences), 96: 695-703.
Dixon, R.A. (2001). Natural products and plant disease resistance. Nature, 411: 843-47
Dubuis, P.H., Marrazi, C., Stadler, E. and Mauch, F. (2005). Sulphur deficiency causes a reduction in antimicrobial potential and leads to increased disease susceptibility of oilseed rape. J. Phytopath., 153: 27-36
Ellis, P.R. and Farrell, J.A. (1995). Resistance to cabbage aphid (Brevicoryne brassicae) in six Brassica accessions in New Zealand. New Zealand J. Crop Hort. Sci., 23: 25-29
Ellis, P.R., Kiff, N.B., Pink, D.A.C., Jukes, P.L., Lynn, J. and Tatchell, G.M. (2000). Variation in resistance to the cabbage aphid (Brevicoryne brassicae) between and within wild and cultivated Brassica species. Genet. Resour. Crop Evol., 47: 395-401
Falk, K.L. and Gershenson, J. (2007). The desert locust, Schistocerca gregaria, detoxifies the glucosinolates of Schowia purpurea by desulfation. J. Chem. Ecol., 33: 1542-55
FAOSTAT (2009). Publicly available databases from: Food and Agricultural Organization of the United Nations (FAO), http://faostat.fao.org/.
Finch, S. and Collier, R. (2012). The influence of host and non-host companion plants on the behaviour of pest insects in field crops. Entomol. exp. Appl., 142: 87-96
Foissac, X., Nguyen, T.L., Christou, P., Gatehouse, A.M.R. and Gatehouse, J.A. (2000). Resistance to green leaf hopper (Nephotettix virescens) and brown plant hopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA). J. Insect Physiol., 46: 573-83
Font, R., Del Rio-Celestino, M., Fernandez, J.M. and De Hardo-Bailon, A. (2003). Acid detergent fiber analysis in oilseed brassicas by near infrared spectroscopy. J. agric. Food Chem., 51: 2917-22.
Font, R., Del Rio-Celestion M., Rosa, E., Aires, A. and De Hardo-Bailon, A. (2005). Glucosinolate assessment in Brassica oleracea leaves by near-infrared spectroscopy. J. agric. Sci., 143: 65-73
Francis, F., Lognay, G., Wathelet, J.P. and Haubruge, E. (2001). Effect of allelochemicals from first (Brassicaceae) and second (Myzus persicae and Brevicoryne brassicae) trophic levels on Adalia bipunctata. J. Chem. Ecol., 27: 243-56
Gabrys, B. and Tjallingii, W.F. (2002). The role of sinigrin in host plant recognition by aphids during initial plant penetration. Entomol. exp. Appl., 104: 89-93
Gardiner, J.B., Morra, M.J., Eberlein, C.V., Brown, P.D. and Borek, V. (1999). Allelochemicals released in soil following incorporation of rapeseed (Brassica napus) green manures. J. agric. Food Chem., 47: 3837-42
Gatehouse, A.M.R., Powell, K.S., van Damme, E.J.M. and Gatehouse, J.A. (1995). Insecticidal properties of plant lectins: Their potential in plant protection. In: A.J. Pusztai and S. Bardocz (eds.) Lectins: Biomedical Perspectives, pp. 35-58. Taylor and Francis, London, UK.
Geervliet, J.B.F., Posthumus, M.A., Vet, L.E.M. and Dicke, M. (1997). Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species. J. Chem. Ecol., 23: 2935-54
Giamoustaris, A. and Mithen, R. (1995). The effect of modifying the glucosinolate content of leaves of oilseed rape (Brassica napus ssp. oleifera) on its interaction with specialist and generalist pests. Annals appl. Biol., 126: 347-63
Gols, R., Bukovinszky, T., Van Dam N.M., Dicke, M., Bullock J.M. and Harvey, J.A. (2008). Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations. J. Chem. Ecol., 34:132-43
Griffiths, D.W., Deighton, N., Birch, A.N.E., Patrian, B., Baur, R. and Stadler, E. (2001). Identification of glucosinolates on the leaf surface of plants from the cruciferae and other closely related species. Phytochem., 57: 693-700
Halkier, B.A. and Gershenzon, J. (2006). Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol., 57: 303-333
Hart, C.A., Batt, R.M., Saunders, J.R. and Getty, B. (1988). Lectin-induced damage to the enterocyte brush border: An electron-microscopic study in rabbits. Scandinavian J. Gastroenterol, 3:1153–59.
Haukioja, E. (1999). Ecology: bite the mother, fight the daughter. Nature, 401: 22-23.
Hern, A., Edwards-Jones, G. and McKinlay, R.G. (1996). A review of preoviposition behaviour of small cabbage white butterfly Pieris rapae (Lepidoptera: Pieridae). Ann. Appl. Biol., 128:349-71.
Hopkins, R.J., Van Dam, N.M. and van Loon, J.J.A. (2009). Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu. Rev. Entomol., 54:57-83.
Hossain, M.A., Maiti, M.K., Basu, A., Sen, S., Ghosh, A.K. and Sen, S.K. (2006). Transgenic expression of onion leaf lectin in Indian mustard offers protection against aphid colonization. Crop Sci., 46: 2022-32
Janzen, D.H., Juster, H.B. and Liener, I.E. (1976). Insecticidal action of the phytohemagglutinin in black beans on Bruchid beetle. Sci., 192: 795-96
Jones, A.M.E., Bridges, M., Bones, A.M., Cole, R. and Rossiter, J.T. (2001). Purification and characterization of a non-plant myrosinase from the cabbage aphid Brevicoryne brassicae. Insect Biochem. Mol. Biol., 31: 1-5
Jones, A.M.E., Winge, P., Bones, A.M., Cole, R. and Rossiter, J.T. (2002). Characterization and evolution of a myrosinase from the cabbage aphid Brevicoryne brassicae. Insect Biochem. Mol. Biol., 32: 275-84
Jones, P. and Vogt, T. (2001). Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta, 213: 164-174.
Joshi, M.L., Ahuja, D.B. and Mathur, B.N. (1989). Losses in seed yield by insect pests and their occurrence on different dates of sowing in Indian Mustard (Brassica juncea subsp. juncea). Indian J. agric. Sci., 59: 166-68.
Kanrar, S., Venkateswari Kirti, P.B. and Chopra, V.L. (2002). Transgenic Indian mustard (Brassica juncea) with resistance to the mustard aphid (Lipaphis erysimi Kalt.). Plant Cell Rep., 20:976-81
Karowe, D.N. and Schoonhoven, L.M. (1992). Interactions among three trophic levels: the influence of host plant on performance of Pieris brassicae and its parasitoid Cotesia glomerata. Entomol. exp. Appl., 62: 241-47
Kawakishi, S. and Kaneko, T. (1987). Interaction of proteins with allyl isothiocyanate. J. agric. Food Chem., 35:85-88
Kazana, E., Pope, T.W., Tibbles, L., Bridges, M., Pickett, J.A., Bones, A.M., Powell, G. and Rossiter, J.T. (2007). The cabbage aphid: a walking mustard oil bomb. Proc. Royal Soc. London B., 274: 2271-77
Kift, N.B., Ellis, P.R., Tatchell, G.M. and Pink, D.A.C. (2000). The influence of genetic background on resistance to the cabbage aphid (Brevicoryne brassicae) in kale (Brassica oleracea var. acephala). Ann. appl. Biol., 136: 189-95
Kim, J.H. and Jander, G. (2007). Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant J., 49: 1008-19
Kissen, R., Rossiter, J. and Bones, A. (2009). The ‘mustard oil bomb’: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem. Rev., 8: 69-86
Komath, S.S., Kavitha, M. and Swamy, M.J. (2006). Beyond carbohydrate binding: new directions in plant lectin research. Organic Biomol. Chem., 4: 973-88.
Kristensen, C., Morant, M., Olsen, C.E., Ekstrom, C.T., Galbraith, D.W., Moller, B.L. and Bak, S. (2005). Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. PNAS (USA), 102: 1779-84.
Kular, J.S. and Kumar, S. (2011). Quantification of avoidable yield losses in oilseed Brassica caused by insect pests. J. Pl. Prot. Res., 51(1): 38-43.
Kumar, S. (2011). Cotesia glomeratus: a potential biocontrol agent of large white butterfly, Pieris brassicae in Indian Punjab. Proc. 13th International Rapeseed Cong., Prague, Czech Republic, June 05-09, 2011, pp. 1141-43.
Kumar, S. (2015). Relative abundance of turnip aphid and the associated natural enemies on oilseed Brassica genotypes. J. agric. Sci. Technol., 17: 1209-1222.
Kumar, S. (2016). Potential of Ethiopian mustard, Brassica carinata as a trap crop for large white butterfly, Pieris brassicae infesting mustard, Brassica juncea. J. Pest Sci. doi:10.1007/s10340-016-0771-6
Kumar, S., Atri, C., Sangha, M.K. and Banga, S.S. (2011). Screening of wild crucifers for resistance to mustard aphid, Lipaphis erysimi (Kaltenbach) and attempt at introgression of resistance gene(s) from Brassica fruticulosa to Brassica juncea. Euphytica, 179: 461-70.
Kumar, S. and Sangha, M.K. (2013). Biochemical mechanism of resistance in some Brassica genotypes against Lipaphis erysimi (Kaltenbach) (Homoptera: Aphididae). Vegetos, 26(2): 387-395. doi: 10.5958/j.2229-4473.26.2.103
Kumar, S. and Singh, Y.P. (2015). Insect Pests In: Kumar, A., Banga, S.S., Meena, P.D. and Kumar, P.R. (eds.) Brassica Oilseeds Breeding and Management. CABI Publishing, Wallingford, UK, pp. 193-232.
Kusnierczyk, A., Winge, P., Jorstad, T., Troczynska, J., Rossiter, J. and Bones, A. (2008). Towards global understanding of plant defense against aphids - timing and dynamics of early Arabidopsis Ler defense responses to cabbage aphid (Brevicoryne brassicae) attack. Plant, Cell Environ., 31: 1097-1115.
Macedo, M.L.R., de Castro, M.M. and das GraÇas Machado Freire, M. (2004). Mechanisms of the insecticidal action of TEL (Talisia esculenta Lectin) against Callosobruchus maculates (Coleoptera: Bruchidae). Arch. Insect Biochem. Physiol., 56: 84-96.
Matthiessen, J.N., Warton, B. and Shackelton, M.A. (2004). The importance of plant maceration and water addition in achieving high Brassica-derived isothiocyanate levels in soil. Agroindustria, 3:277-80.
Mattiacci, L., Rudelli, S., Rocca, B.A., Genini, S. and Dorn, S. (2001). Systemically induced response of cabbage plants against a specialist herbivore, Pieris brassicae. Chemoecol., 11: 167-73.
Mattner, S.W., Porter, I.J., Gounder, R.K., Shanks, A.L., Wren, D.J. and Allen, D. (2008). Factors that impact on the ability of biofumigants to suppress fungal pathogens and weeds of strawberry. Crop Prot., 27: 1165-73.
Mewis, I.Z., Ulrich, C. and Schnitzler, W.H. (2002). The role of glucosinolates and their hydrolysis products in oviposition and host plant finding by cabbage webworm. Hellula undalis. Entomol. exp. Appl., 105:129-39
Mojtahedi, H., Santo, G.S., Wilson, J.H. and Hang, A.N. (1993). Managing Meloidogyne chitwoodi on potato with rapeseed as green manure. Pl. Dis., 77: 42-46.
Morant, A.V., Jorgensen, K., Jorgensen, C., Paquette, S.M., Perez, R.S., Moller, B.L. and Bak, S. (2008). ?-Glucosidases as detonators of plant chemical defense. Phytochem., 69: 1795-1813
Mossler, M.A. (2005). Florida Crop/Pest Management Profile: Specialty Brassicas (Arrugula, Bok Choy, Chinese Broccoli, Chinese Mustard, Napa) PI-70, Pesticide Information Office, University of Florida, USA.
Muelchen, A.M., Rand, R.E. and Parke, J.L. (1990). Evaluation of crucifer manures for controlling aphanomyces root rot of peas. Pl. Dis., 74:651-54
Murdock, L.L., Huesing, J.E., Nielsen, S.S., Pratt, R.C. and Shade, R.E. (1990). Biological effects of plant lectins on the cowpea weevil. Phytochem., 29:85-89
Nachbar, M.S. and Oppenheim, J.D. (1980). Lectins in the United States diet: a survey of lectins in commonly consumed foods and a review of the literature. American J. clinic. Nutr., 33: 2338–45
Nottingham, S.F., Hardie, J., Dawson, G.W., Hick, A.J., Pickett, J.A., Wadhams, L.J. and Woodcock, C.M. (1991). Behavioral and electrophysiological responses of aphids to host and nonhost plant volatiles. J. Chem. Ecol., 17:1231-42
Pedras, M.S.C., Okanga, F.I., Zaharia, I.L. and Khan, A.Q. (2000). Phytoalexins from crucifers: synthesis, biosynthesis, and biotransformation. Phytochem., 53: 161-176
Pedras, M.S.C., Zheng, Q.A. and Gadagi, R.S. (2007a). The first naturally occurring aromatic isothiocyanates, rapalexins A and B are cruciferous phytoalexins. Chem. Comm., 4: 368-70
Pedras, M.S.C., Gadagi, R.S., Jha, M. and Sarma-Mamillapalle, V.K. (2007b). Detoxification of the phytoalexin brassinin by isolates of Leptosphaeria maculans pathogenic on brown mustard involves an inducible hydrolase. Phytochem., 68:1572-78
Peumans, W.J. and Van Damme, E.J.M. (1995). The role of lectins in plant defense. Histochem. J., 27: 253-71
Pivnick, K.A., Jarvis, B.J. and Slater, G.P. (1994). Identification of olfactory cues used in host-plant finding by diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). J. Chem. Ecol., 20: 1407-27
Pope, T., Kissen, R., Grant, M., Pickett, J., Rossiter, J. and Powel, G. (2008). Comparative innate responses of the aphid parasitoid Diaeretiella rapae to alkenyl glucosinolate derived isothiocyanates, nitriles and epithionitriles. J. Chem. Ecol., 34: 1302-10
Powell, K.S. (2001). Antimetabolic effects of plant lectins towards nymphal stages of the plant hoppers Tarophagous proserpina and Nilaparvata lugens. Entomol. exp. Appl., 99: 71-77
Powell, K.S., Gatehouse, A.M.R., Hilder, V.A. and Gatehouse, J.A. (1993). Antimetabolic effects of plant lectins and plant and fungal enzymes on the nymphal stages of two important rice pests, Nilaparvata lugens and Nephotettix cinciteps. Entomol. exp. Appl., 66: 119-26
Rahbé, Y., Sauvion, N., Febvay, G., Peumans, W.J. and Gatehouse, A.M.R. (1995). Toxicity of lectins and processing of ingested proteins in the pea aphid Acyrthosiphon pisum. Entomol. exp. Appl., 76: 143-55
Rangkadilok, N., Nicolas, M.E., Bennett, R.N., Premier, R.R., Eagling, D.R. and Taylor, P.W.J. (2002). Developmental changes of sinigrin and glucoraphanin in three Brassica species (Brassica nigra, Brassica juncea and Brassica oleracea var. italica). Sci. Hort., 96: 11-26
Rask, L., Andreasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B. and Meijer, J. (2000). Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Pl. Mol. Biol., 42: 93-113
Ratanpara, H.C., Patel, J.R., Borad, P.K., Mehta, D.M., Patel. A.M. and Shah, B.R. (1992). Relationship between insect damage and yield of cabbage (Brassica oleracea convar capitata var capitata) transplanted during different times. Indian J. agric. Sci., 62: 88-90
Ratzka, A., Vogel, H., Kliebenstein, D.J., Mitchell-Olds, T. and Kroymann, J. (2002). Disarming the mustard oil bomb. PNAS (USA), 99: 11223-228
Renwick, J. A. A., Haribal, M., Gouinguen?, S. and Städler, E. (2006). Isothiocyanates stimulating oviposition by the diamondback moth, Plutella xylostella. J. Chem. Ecol., 32: 755-66
Renwick, J.A.A. (2002). The chemical world of crucivores: lures, treats and traps. Entomol. exp. Appl., 104: 35-42
Renwick, J.A.A., Radke, C.D., Sachdev-Gupta, K. and Städler, E. (1992). Leaf surface chemicals stimulating oviposition by Pieris rapae (Lepidoptera: Pieridae) on cabbage. Chemoecol., 3: 33-38
Rohloff, J. and Bones, A.M. (2005). Volatile profiling of Arabidopsis thaliana – Putative olfactory compounds in plant communication. Phytochem., 66: 1941-55
Rossiter, J.T., Jones, A.M. and Bones, A.M. (2003). A novel myrosinase-glucosinolate defense system in cruciferous specialist aphids. Recent Adv. Phytochem., 37: 127-42
Rouxel, T., Kollmann, A., Boulidard, L. and Mithen, R. (1991). Abiotic elicitation of indole phytoalexins and resistance to Leptinotarsa maculans within Brassicaceae. Planta, 184: 271-78
Sadasivam, S. and Thayumanavan, B. (2003). Lectins. In: Molecular Host Plant Resistance to Pests. Marcel Dekker Inc., New York. pp. 61-83
Sang, J.P., Minchinton, I.R., Johnstone, P.K. and Truscott, R.J.W. (1984). Glucosinolate profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and swede. Can. J. Pl. Sci., 64: 77-93
Sauvion, N., Charles, H,, Febvay, G. and Rahbé, Y. (2004a). Effects of jackbean lectin (ConA) on the feeding behaviour and kinetics of intoxication of the pea aphid, Acyrthosiphon pisum. Entomol. exp. Appl., 110: 31-44.
Sauvion, N., Nardon, C., Febvay, G., Gatehouse, A.M.R. and Rahbé, Y. (2004b). Binding of the insecticidal lectin Concanavalin A in pea aphid, Acyrthosiphon pisum (Harris) and induced effects on the structure of midgut epithelial cells. J. Insect Physiol., 50: 1137–50.
Sekhon, B.S. (1999). Population dynamics of Lipaphis erysimi and Myzus persicae on different species of Brassica, 10th International Rapeseed Congress, Canberra, Australia.
Sekhon, B.S. and Ahman, I. (1993). Insect resistance with special reference to mustard aphid. In: Labana, K.S., Banga, S.S., Banga, S.K. (Eds.), Breeding Oilseed Brassicas, Springer-Verlag, Berlin, Germany, pp. 206-217.
Shelton, A.M. and Badenes-Perez, F.R. (2006). Concepts and applications of trap cropping in pest management. Annu. Rev. Entomol., 51: 285-308
Shukle, R.H. and Murdock, L.L. (1983). Lipoxygenase, trypsin inhibitor and lectin from soybeans: effects on larval growth of Menduca sexta (Lepidoptera: Sphingidae). Environ. Entomol., 12: 787-91
Siemens, D.H. and Mitchell-Olds, T. (1996). Glucosinolates and herbivory by specialists (Coleoptera: Chrysomelidae, Lepidoptera: Plutellidae): consequences of concentration and induced resistance. Environ. Entomol., 25: 1344-53
Smallegange, R., Van Loon, J., Blatt, S., Harvey, J., Agerbirk, N. and Dicke, M. (2007). Flower vs. leaf feeding by Pieris brassicae: glucosinolate rich flower tissues are preferred and sustain higher growth rate. J. Chem. Ecol., 33: 1831-44
Snowdon, R.J., Luhs, W. and Friedt, W. (2007). Oilseed rape. In: Kole, C. (Ed.) Genome mapping and molecular breeding in plants. Volume 2 Oilseeds, Springer-Verlag Berlin Heidelberg, Germany, pp. 55-114
Steinberg, S., Dicke, M. and Vet, L.E.M. (1993). Relative importance of infochemicals from first and second trophic level in long-range host location by the larval parasitoid Cotesia glomerata. J. Chem. Ecol., 19: 47-59.
Tattersall, D.B., Bak, S., Jones, P.R., Olsen, C.E., Nielsen, J.K., Hansen, M.L., Hoj, P.B. and Moller, B.L. (2001). Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Sci., 293: 1826-28
Thompson, G.A. and Goggin, F.L. (2006). Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J. exp. Bot., 57(4): 755-766
Thorsteinson, A.J. (1953). The chemotactic responses that determine host specificity in an oligophagous insect (Plutella maculipennis (Curt.) Lepidoptera). Can. J. Zool., 31: 52-72
Tripathi, M.K. and Mishra, A.S. (2007). Glucosinolates in animal nutrition: A review. Animal Feed Sci. Technol., 132: 1-27
Vanetten, H.D., Mansfield, J.W., Bailey, J.A. and Farmer, E.E. (1994). 2 classes of antibiotics – phytoalexins vs phytoanticipins. Pl. Cell, 6:1191-92
Vasconcelos, I.M. and Oliveira, J.T. (2004). Antinutritional properties of plant lectins. Toxicon, 44:385-403
Walters, D.R. (2011). Plant defense: Warding off attack by pathogens, herbivores and parasitic plants. Blackwell-Publishing Ltd., UK, ISBN: 9781405175890, 243p.
War, A.R., Paulraj, M.G., Ahmad, T., Buhroo, A.A., Hussain, B., Ignacimuthu, S. and Sharma, H.C. (2012). Mechanisms of plant defense against insect herbivores. Pl. Signal. Behav. 7(10): 1306-1320. doi: 10.4161/psb.21663
Wittstock, U., Agerbirk, N., Stauber, E.J., Olsen, C.E., Hippler, M., Mitchell-Olds, T., Gershenzon, J. and Vogel, H. (2004). Successful herbivore attack due to metabolic diversion of a plant chemical defense. PNAS (USA), 101: 4859-64
Citation Format
How to Cite
Kumar, S. (2017). Plant secondary metabolites (PSMs) of Brassicaceae and their role in plant defense against insect herbivores – A review. Journal of Applied and Natural Science, 9(1), 508–519. https://doi.org/10.31018/jans.v9i1.1222
More Citation Formats:
Section
Research Articles