Biochemical changes in cotton plants due to infestation by cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae)
Article Main
Abstract
The study on biochemical changes in cotton plants (Gossypium hirsutum L.) due to infestation by cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) was conducted at CICR Nagpur during 2014-15. Total protein contents estimated from the shoots of the healthy plants (4.29 mg/g) indicated 50.5% increase over the healthy plants (2.85 mg/g). Total phenol content increased by 185.7% in the mealybug infested plants (0.20?g/g) over the healthy plants (0.07?g/g). Insignificant difference in the level of total soluble sugar was observed in mealybug infested plants (1.00?g/g) as compared to healthy plants (0.90?g/g). Total reducing sugar was found to be unaffected with the mealybug infestation. Although there was depletion in all the photosynthetic pigments viz., chlorophyll a (19.1%), chlorophyll b (23.7%), total chlorophyll (21.2%) and carotenoids (20.8%) due to the mealybug infestation, these values were not statistically different in the healthy plants. This is the first report on biochemical changes in cotton plant due to infestation of P. solenopsis.
Article Details
Article Details
Biochemical changes, Cotton, Mealybug, Phenacoccus solenopsis
Bhonwong, A., Stout, M. J., Attajarusit, J. and Tantasawat, P. (2009). Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). J. Chem. Ecol., 35:28-38.
Bose, P. C., Majumdar, S. K. and Senguptha, K. (1992). Effect of tukra disease on the nutritional composition of mulberry (Morus alba L.). Sericologia, 32: 311-316
Buntin, G.D., Gilbertz, D.A. and Oetting, R.D. (1993). Chlorophyll loss and gas exchange in tomato leaves after feeding injury by Bemisia tabaci (Homoptera: Aleyrodidae). J. Econ. Entomol., 86:517-22
CCI. (2016). Cotton Corporation of India, Ministry of textile, Government of India available at http://www.cotcorp.gov.in/national-cotton.aspx.
Chen, M. S. (2008). Inducible direct plant defence against insect herbivores: A review. Insect Science, 15:101-114
Chen, Y., Ni, X. and Buntin, G.D. (2009). Physiological, nutritional and biochemical bases of corn resistance to foliage-feeding fall Armyworm. J. Chem Ecol., 35:297-306
Dai, Y., Shao, M., Hannaway, D., Wang, L., Liang, J., Hu, L. and Lu, H. (2009) Effect of Thrips tabaci on anatomical features, photosynthetic characteristics and chlorophyll fluorescence of Hypericum sampsonii leaves. Crop Prot., 28:327-332
Fraenkel, G. (1959). The raison detre of secondary plant substances. Science, 129 (3361): 1466-70
Golawska, S., Krzy, Zanowski, R. and Lukasik, I. (2010). Relationship between infestation and chlorophyll content in Fabaceae species. Acta Biol. Crac. Ser. Bot., 52: 76–80
Gomez, K. S., Oosterhuis, D. M., Rajguru, S. N. and Johnson, D. R. (2004). Molecular biology and physiology. Foliar antioxidant enzyme responses in cotton after aphid herbivory. J. Cotton Sci., 8: 99-104
Heng-Moss, T. M., Ni, X., Macedo, T., Markwell, J. P., Baxendale, F. P., Quisenberry, S. S. and Tolmay, V. (2003). Comparison of chlorophyll and carotenoid concentrations among Russian wheat aphid (Homoptera: Aphididae)-infested wheat isolines. J. Econ. Entomol., 96:475–481
Hodge, J.E. and Hofreiter, B.T. (1962). In: Methods in carbohydrate chemistry (eds Whistler, R.L and BeMiller, J.N.), Academic Press, New York.
Hori, K. (1973). Studies on feeding habits of Lygus disponsi Lannavuori (Hemiptera : Miridae) and the injury to host plant: III. Phenolic compounds, acid phosphatase and oxidative enzymes in the injured tissue of sugar beef leaf. Appl. Ent. Zool., 8: 103-112
Huang, J., Zhang, P. J., Zhang, J., Lu, Y. B., Huang, F. and Li, M. J. (2013). Chlorophyll content and chlorophyll fluorescence in tomato leaves infested with an invasive Mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae). Environ. Entomol., 42(5):973-979
Huang, T. I., Reed, D. A., Perring, T. M., Palumbo, J. C. (2014). Feeding damage by Bagrada hilaris (Hemiptera: Pentatomidae) and impact on growth and chlorophyll content of Brassicaceous plant species. Arthropod-Plant Interact, doi:10.1007/s11829-014-9289-0
Lokeshwari, D., Verghese, A., Shivashankar, S., Krishna Kumar, N. K., Manjunatha, H. and Venugopalan, R. (2014). Effect of Aphis odinae (Hemiptera: Aphididae) infestation on sugars and Amino acid content in mango. African Entomology, 22(4):823-827
Lowery, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem., 193:265-275
Mahadeva, A. and Nagaveni, V. (2011). Alterations in the biochemical components and photosynthetic pigments of mulberry (Morus Spp.) attacked by leaf roller (Diaphania pulverulentalis) pest. African Journal of Biochemistry Research, 5(14): 365-372
Mahadeva, A. (2016). An Investigation on changes in biochemical contents in Mealybugs infested Mulberry foliage. Journal of Plant Science & Research, 3 (2): 1-5
Malick, C. P. and Singh, M. B. (1980). In: Plant Enzymology and Histoenzymology, Kalyani Publications, New Delhi, p. 286.
Mao. L.Z., Lu, H.F., Wang, Q. and Cai, M.M. (2007). Comparative photosynthesis characteristics of Calycanthus chinensis and Chimonanthus praecox. Photosynthetica, 45:601–605
Mary, E. P., Maria, R. and Paymon, A. (2006). Response of photosynthesis to high light and drought for Arabidopsis thaliana grown under a UV-B enhanced light regime. Photosynth. Res., 90:79–90
Miller, G. L. (1972). Use of dinitrosalicyuclic acid reagent for determination of reducing sugars. Anal. Chem., 31: 426- 428
Nagrare, V. S., Kranthi, S., Kranthi, K. R., Naik, V. C. B., Kumar, R., Dharajothi, B., Udikeri, S. S., Mukherjee, A. K., Mukherjee, P. K., Monga, D., Sampath Kumar, A., Narkhedkar, N. G., Banu, Gulsar, Raju, A. R., Tayade, A.S., Prakash, A. H. and Khader, SESA. (2013). Handbook of Cotton Plant Health, Central Institute for Cotton Research, Nagpur pp: 100
Narayanaswamy, K. C. (2003). Biochemical composition of leaf roller infested mulberry leaf. Insect Environ., 8(4): 166-167
Ni, X., Quisenberry, S. S., Heng-Moss, T., Markwell, J., Sarath, G., Klucas, R. and Baxendale, F. (2001). Oxidative responses of resistant and susceptible cereal leaves to symptomatic and non-symptomatic cereal aphid (Hemiptera: Aphididae) feeding. J. Econ. Entomol., 94:743-751
Noreen, Z. and Ashraf, M. (2009). Change in antioxidant enzymes and some key metabolites in some genetically diverse cultivars of radish (Raphanus sativus L.). Environ. Exp. Bot., 67:395-402. doi: 10.1016/j.envexpbot. 2009.05.011
Parsons, T. R., Maita, Y. and Lalli, C. M. (1984). Oxford: Pergamon;. A manual of chemical and biological methods for seawater analysis.
Prasad, S. K., Sreedhar, S., Singhvi, N. R., Kodandaramaiah, J., Sen, A.K. (2002) Post biochemical changes in thrips infested leaves of mulberry (Morus spp.). Plant Archives, 2:85-88
Punithavalli, M., Muthukrishnan, N. M. and Balaji Rajkuma, M. (2013). Defensive responses of rice genotypes for resistance against rice Leaf-folder Cnaphalocrocis medinalis. Rice Science, 20(5):363-370
Ramiro, D. A., Guerreiro-Filho, O. and Mazzafera, P. (2006). Phenol contents, oxidase activities and the resistance of coffee to the leaf miner Leucoptera coffeella. J. Chem. Ecol., 32:1977-88. doi: 10.1007/s10886-006-9122-z
Sharma, H. C., Pampathy, G., Dwivedi, S. L. and Reddy, L. J. (2003). Mechanism and diversity of resistance to insect pests in wild relatives of groundnut. J Econ Entomol. 96:1886–97. doi: 10.1603/0022-0493-96.6.1886
Sharma, H.C., Sujana, G. and Rao, D.M. (2009). Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod-Plant Interact., 3:151-61. doi: 10.1007/s11829-009-9068-5
Shree, M.P. and Mahadeva, A. (2005). Impact of jassids (Empoasca flavescens F.) infestation on the biochemical constituents and photosynthetic pigments of mulberry (Morus spp.) foliage. National seminar on “Scenario of Sericulture in India”. 25th - 26th March. Sri Padmavathi Mahila Visvavidyalayam, Thirupathi, Andhra Pradesh, p. 13.
Sinha, S., Balsaraswathi, R., Selvaraju, K. and Shanmungasundaram, P. (2005). Molecular and biochemical markers associated with leaffolder (Cnaphalocrocis medinalis G.) resistance in rice (Oryza sativa L.). Ind. J. Biochem. Biophys., 42: 228-232.
Usha Rani, P. and Jyothsna, Y. (2009). Physiological changes in the groundnut, Arachis hypogaea L. plant due to the infection of a fungal pathogen, Cercosporidium personatum Deighton. Allelopathy J., 23(2): 369–378
Usha Rani, P. and Jyothsna, Y. (2010). Biochemical and enzymatic changes in rice as a mechanism of defense. Acta Physiol. Plant., 32:695–701. doi: 10.1007/s11738-009-0449-2
Velide, L., Cheruvuand, S. and Donthula, S. (2013). Studies on biochemical components, secondary metabolites and photosynthetic pigments in Mealybug infected Terminalia arjuna-a primary host plant of Tasar Silkworm Anthereae mylitta drury. Helix, 2: 297-300
War, A.R., Paulraj, M.G., Ahmad, T., Buhroo, A.A., Hussain, B., Ignacimuthu, S. and Sharma, H. C. (2012). Mechanisms of plant defence against insect herbivores. Plant Signaling & Behavior, 7(10): 1306-1320
War, A. R., Paulraj, M.G., Ignacimuthu, S. and Sharma, H. C. (2013). Defensive responses in groundnut against chewing and sap-sucking insects. Journal of Plant Growth Regulation, 32 (2): 259-272 DOI: http://dx.doi.org/10.1007/s00344-012-9294-4
War, A. R., Paulraj, M.G., War, M.Y. and Ignacimuthu, S. (2011a). Jasmonic acid mediated induced resistance in groundnut (Arachis hypogaea L.) against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Journal of Plant Growth Regulation, 30:512-523
War, A. R., Paulraj, M.G., War, M.Y., Ignacimuthu, S. (2011b). Differential defensive response of groundnut to Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) J Plant Interact. doi: 10.1080/17429145. 2011.587898.
Whittaker, R. H. (1970). The biochemical ecology of higher plants. In Ernest Sondheimer and John B. Simeone. Chemical ecology. Boston: Academic Press. pp. 43–70. ISBN 0-12-654750-5.
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)