Mamta Nehra Mukesh Kumar Dev Vart Jyoti Kaushik Rajesh Kumar Sharma


Studies on genetic diversity in Pennisetum germplasm are the promising opportunities for the use of un-domesticated materials for improving pearl millet varieties. DNA based markers have now emerged as a potential genomic tool for estimation of genetic diversity among various cultivars and varietal identification. In present study, genetic diversity among 49 stay green inbreds of pearl millet was studied using simple sequence repeats (SSRs). Twenty nine polymorphic SSR primers, identified after initial screening of 70, were used to study diversity among these lines. A total of 108 alleles were amplified, collectively yielding unique SSR profiles for all the 49 inbreds. The average number of SSR alleles per locus was 3.72, with a range from 2 to 13. Polymorphic information content (PIC) values of various SSR loci across all the 49 inbreds ranged from 0.14 to 0.87 with an average of 0.51 per lo-cus. This indicated sufficient diversity among the 49 pearl millet inbreds and total 5 out of 29 polymorphic SSR loci, namely Xpsmp2070, Xpsmp2001, Xpsmp2008, Xpsmp2066, Xpsmp2072 revealed PIC values above 0.70, can be considered highly useful for differentiation of pearl millet inbred lines. The lowest PIC value (0.47) for linkage group 7 showed comparatively conserved nature of this linkage group A dendrogram obtained using WARD’s minimum variance method further delineates 49 inbreds into 8 major clusters, and the clustering pattern corroborated with their pedigree and characteristics traits.




Pearl millet, Genetic diversity, PIC, SSR Marker, Dendrogram

Anderson, J.A., Churchill, G.A., Autrique, J.E., Sorrells, M.E. and Tanksley, S.D. (1993). Optimizing parental selection for genetic linkage maps. Genome,36:181-186.
Anonymous (2014). Project Coordinator Review (AICPMIP) Jodhpur (Rajasthan). P.3.
Boyko, E. V., Gill, K. S., Mickelson-Young, L., Nasuda, S., Raupp, W. J., Ziegle, J. N., Singh, S., Hassawi, D. S., Fritz, A. K., Namuth, D., Lapitan, N. L. V. and Gill, B. S. (1999). A high density linkage map of Aegilops tauschii, the D-genome progenitor of bread wheat. Theoretical and Applied Genetics, 99:16-26
Chakauya, E. and Tongoona, P. (2008). Analysis of genetic relationships of pearl millet landraces from Zimbabwe, using microsatellites. International Journal of Plant Breeding and Genetics, 2:1-7
Ejeta, G., Hassen, M.M. and Mertz, E.T. (1987). In vitro digestibility and amino acid composition of pearl millet (Pennisetum typhoides) and other cereals. Proceedings of the National Academy of Sciences (USA), 84:6016–6019
Hill, G.M. and Hanna, W.W. (1990). Nutritive characteristics of pearl millet grain in beef cattle diets. Journal of Animal Sciences, 68:2061-2066.
Huang, X. Q., Borner, A., Roder, M.S. and Ganal, M.W. (2002). Assessing genetic diversity of wheat germplasm using microsatellite markers. Theoretical and Applied Genetics,105: 699-707
Kannan, B., Senapathy, S., Raj, A.G.B., Chandra, S., Muthiah, A., Dhanapal, A.P. and Hash, C.H. (2014). Association Analysis of SSR Markers with Phenology, Grain, and Stover-Yield Related Traits in Pearl Millet. The Scientific World Journal. (http://dx.doi.org/ 10.1155/ 2014/562327)
Kapila, R.K., Yadav, R.S., Plaha, P., Rai, K.N., Yadav, O.P., Hash, C.T. and Howarth, C.J. (2008). Genetic diversity among pearl millet maintainers using microsatellite markers. Plant Breeding, 127: 33-37
Kleinhofs, A., Kilian, A., Saghai Maroof, M. A., Biyashev, R. M., Hayes, P., Chen, F. Q., Lapitan, N., Fenwick, A., Blake, T. K., Kanazin, V., Ananiev, E., Dahleen, L., Kudrna, D., Bollinger, J., Knapp, S. J., Liu, B., Sorrells, M., Heun, M., Franckowiak, J. D., Hoffman, D., Skadsen, R. and Steffenson, B. J. (1993). A molecular, isozyme and morphological map of the barley genome. Theoretical and Applied Genetics, 86:705-712
Liu, C.J., Witcombe ,J.R., Hash, C.T., Busso, C.S., Pittaway, T.S., Nash, M. and Gale, M.D. (1994). Witcombe JR, Duncan RR (eds): Use of molecular marker in sorghum and pearl millet breeding for developing countries. Oversease Development Administration: London U.K. pp. 57-69.
Murray, M.G. and Thompson, W.F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8:4321¬ 4325
Ni, J., Colowit, P. M. and Mackill, D. J. (2002). Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Science, 42: 601-607
Poncet, V., Lamy, F., Devos, K. M., Gale, M. D., Sarr, A. and Robert, T. (2000). Genetic control of domestication traits in pearl millet. Theoretical and Applied Genetics, 100:147-159.
Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A. and Allad, R.W.(1984). Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, Chromosomal location and Population dynamics. Proceedings of National Academy of Sciences, U.S.A., 81:8014-8019
Singh, A.K., Rana, M.K., Singh, S., Kumar, S., Durgesh, K. and Arya, L. (2013). Assesment of genetic diversity among pearl millet cultivars using SSR markers. Range Management and Agroforestry, 34:77-81
Stich, B., Haussmann, B.I.G. and Pasam, R. (2010). Patterns of molecular and phenotypic diversity in pearl millet from West and Central Africa and their relation to geographical and environmental parameters. BMC Plant Biology, 10:216
Sumathi, P. and Vinodhana, N.K. (2014). Estimation of Genetic relatedness among the germplasm accessions of Pearl millet. Plant Gene and Trait., 5:1-5
Weir, B.S. and Buckleton, J.S. (1996). Statistical issues in DNA profiling. Advances in Haemogenetics, 6:457-464
Xu, Y., Shimoro, X. and Hofstra, H. (1994). Plant DNA isolation protocol. Nucleic Acids Research, 22: 2399-2403
Research Articles

How to Cite

Molecular characterization of pearl millet [Pennisetum glaucum (L.) R. Br] inbreds using microsatellite markers. (2017). Journal of Applied and Natural Science, 9(1), 357-363. https://doi.org/10.31018/jans.v9i1.1196