Development of promiscous rhizobia for diverse rabi legumes (Chickpea, Pea and Lentil)
Article Main
Abstract
Conjugation between microsymbiont was used to create genetic variations in rhizobia for diverse rabi legumes (chickpea, pea and lentil) with better characteristics in nodulation and nitrogen fixation process. Ten antibiotics were used as selectable markers for the screening of twenty four bacterial strains to be used in mating experiments for obtaining transconjugants. All bacterial strains were sensitive to gentamycin and resistant to streptomycin, kanamycin and sulphanilamide. Total five fusants were obtained from each rhizobial cross combination with the help of electro-poration. Modified transconjugants, rhizobial strains had promiscuous infection with 50-122% more nodules showed significant increase in shoot fresh weight, dry weight and total nitrogen content in chickpea, pea and lentil plants. Electrofusantsrhizobial strains improved shoot nitrogen content up to 67% in lentil and 54% in pea and chickpea plants. The amount of nitrogen fixed in chickpea was highest (3.71gm) by transconjugants DP-C6- HLN followed by DP-C6-HP14 (3.56gm). Transconjugants DP-HP14-HLN fixed the highest amount of nitrogen (3.92gm) in pea and 4.06gm in lentil plants. Plasmids were also analyzed in order to characterize their role in the evolution of rhizobial symbionts and their involvement in symbiotic behaviour. The developed Rhizobium strains with improved symbiotic association and ability to infect across strict specificity for host legumes would be of great help for the farming community at large.
Article Details
Article Details
Biofertilizer, Nitrogen fixation, Symbiosis, Transconjugants
Andrade, F.H., Calviño, P.A., Cirilo, A. and Barbieri, P.A. (2002). Yield responses to narrow rows depend on
increased radiation interception. Agronomy. J., 94:975–980
Carden, D.E. and Felle, H.H. (2003). The mode of action of cell wall degrading enzymes and their interference with nod factor signalling in Medicago sativa root hairs. Planta., 216(6): 993-1002
Charman, N. and Ballard, R.A. (2004). Burr medic (Medicago polymorpha L.) selections for improved N2 fixation with naturalized soil rhizobia. Soil Biol. Biochem., 36:1331–1337
Chassy, B.M., Mercenier, A. and Flickinger, J. (1988). Transformation of bacteria by electroporation. Trends Biotechnol., 6:303–309
Chitchanok, A., Rattasaritt, P., Suthatip, S., Suphaporn, P., Nattayana, P. and Yanee, T. (2011). Improvement of vitamin B6 production from Rhizobium sp. 6-1C1 by random mutation. KKU Res J., 16(8): 911-918
Cresti, S., Lattanzi, M., Zanchi, A., Montagnani, F., Pollini, S., Cellesi, C. and Rossolini, G.M. (2002). Resistance determinants and clonal diversity in group A streptococci collected during a period of increasing macrolide resistance. Antimicrob Agents Chemother, 46:1816–1822
De Jonj, T.M., Brewin, N.J., Johnston, A.W. B. and Phillips, D.A. (1982). Improvement of symbiotic properties in Rhizobium leguminosarum by plasmid transfer. J. Gen. Microbiol., 128:1829-1838.
Dixon, R. and Daniel, K. (2004) Genetic regulation of biological nitrogen fixation. Microbiol. 2: 621-631
Dunican, L.K. and Cannon, F.C. (1971). The genetic control of symbiotic properties in Rhizobium: evidence for plasmid control. Plant Soil (Spec. vol.):73-79
Eaglesham, A.R.J. (1987). The use of intrinsic antibiotic resistance for Rhizobium study. In: G. H. Elkan (ed.) symbiotic nitrogen fixation technology. Marcel Dekka, Inc., New York. 185-204
Eckhardt, T. (1978). A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1: 584-588
Esperanza, Martinez-Romero and Monica, R. (1990). Increased Bean (Phaseolus vulgaris L.) nodulation competitiveness of genetically modified Rhizobium strains. Appli. and Environ. Microbiol., 56(8):2384-2388
Galardini, M., Mengoni, A., Brilli, M., Pini, F., Fioravanti, A. and Lucas, S. (2011). Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti. BMC Genomics, 12: 235
Garg, B., Dogra, R.C. and Sharma, P.K. (1999). High efficiency transformation of Rhizobium leguminosarum by electroporation. Appl. Environ. Microbiol., 65(6): 2802–2804
Giraud, E., Moulin, L., Vallenet, D., Barbe, V., Cytryn, E. and Avarre, J.C. (2007). Legumes symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science, 316:1307–12
Gonzalo, T., Tejerizoa, M.F., Del, P., Walter, D., Mauricio, L., María, Á.G., Carla, M., María, E.S., Ileana, S., Daniel, W., Rafael, S., Stefan, W., Andreas, S., Antonio, L. and Mariano, P. (2011). First genomic analysis of the broad-host-range Rhizobium sp. LPU83 strain, a member of the low-genetic diversity Oregon-like Rhizobium sp. Group. J. of Biotechno., 155: 3–10
Hashem, F.D., Swelim, D.M., Kuykendell, L.D., Mohamed, A.I., Abdel-Wahab S.M. and Hegazi, N.I. (1998). Identification and characterization of salt tolerant Leuceana nodulation Rhizobium strains. Biol. Fertil. Soil, 27:35-341
Jayachandran, S. and Balasubramaniam, A. (1978). Differences in the polysaccharides produced by Camr and Str mutants of Rhizobium sp. Indian J. Microbiol., 18:76-79
Jaynes, D.B., Colvin, T.S., Karlen, D.L., Cambardella, C.A. and Meek, D.W. (2001). Nitrate losses in subsurface drainage as affected by nitrogen fertilizer rate. J. Environ., 30:1305-1314
Kawaharada, Y., Kelly, S., Nielsen, M.W., Hjuler, C.T., Gysel, K., Muszynski, A., Carlson, R.W., Thygesen, M.B., Sandal, N., Asmussen, M.H., Vinther, M., Andersen, S.U., Krusell, L., Thirup, S., Jensen, K.J., Ronson, C.W., Blaise, M., Radutoiu, S. and Stougaard, J. (2015). Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature, 523: 308 –312
Kundu, S. and Dudeja, S.S. (2008). Molecular diversity, predominance and effectiveness of mungbean rhizobia. Indian J. Microbiol., 48: 432–439
Li, Q. Q., Wang, E. T., Zhang, Y. Z., Zhang, Y. M., Tian, C. F., Sui, X. H., Chen, W. F. and Chen, W. X. (2011). Diversity and biogeography of rhizobia isolated from root nodules of Glycine max grown in Hebei Province, China. Microb. Ecol., 61: 917–931
Martinez, E., R. Palacios and Sanchez, F. (1987). Nitrogen fixing nodules induced by Agrobacterium harboring Rhizobium phaseoli plasmids. J. Bacteriol., 169:2828-2834
Martinez, R.E. and Caballero, M.J. (1996). Rhizobium phylogenies and bacterial genetic diversity. Crit. Rev. Plant Sci., 15:113-140
Mishra, A.K., Roy, P. and Das, S.K. (1975). Occurance of streptomycin resistant and dependant mutations in Rhizobium lupin under the influence of nitrous acid. Curr. Sci., 44: 267-269
Mosier, A.R., Wassmann, R., Verchot, L., King, J.Y. and Palm, C. (2004). Methane and nitrogen oxide fluxes in tropical agricultural soils: Sources, sinks and mechanisms. Environ. Develop. and Sustain., 6:11-49
Musiyiwa, K., Mpepereki, S. and Giller, K.E. (2005b) Symbiotic effectiveness and host ranges of indigenous soybean varieties in Zimbabwean soils, Soil Biol. Biochem., 37: 1169–1176
Nadwani, R. and Dudeja, S.S. (2013) Functional diversity of native mesorhizobial genotypes nodulating chickpea in Indian soils of Haryana State. Acta Agronomica Hungarica, 61(3): 207–217
Nascimento, F., Brigido, C., Alho, L., Glick, B.R. and Oliveira, S. (2012). Enhanced chickpea growth promotion ability of a Mesorhizobium strain expressing an exogenous ACC deaminase gene. Plant Soil., 353:221–30
Oldroyd, G.E.D., Murray, J.D., Poole, P.S. and Downie, J.A. (2011). The rules of engagement in the legume-rhizobial Symbiosis. Annu. Rev. Genet., 45:119–144
Pankhurst, C.E., Macdonald, P.E. and Reeves, J.M. (1986). Enhanced nitrogen fixation and competitiveness for nodulation of Lotus pedunculatus by a plasmid-cured derivative of Rhizobium loti. J. Gen. Microbiol., 132: 2321-2328
Rasool, S.A., Ahmad, A., Khan, S. and Wahab, A. (2003). Plasmid Borne Antibiotic Resistance Factors among Indigenous Klebsiella Pak. J. Bot., 35(2): 243-248
Rosenblueth, M., Hynes, M.F. and Martinez-Romero, E. (1998). Rhizobium tropici teu genes involved in specific uptake of Phaseolus vulgaris bean-exudate compounds. Mol. Gen. Genet., 258:587-598
Sa?¨d, J., Biserka, R., Moez, H., Philippe, K., Ulrich, B., Danielle, Prome., Jean, C.P. and William, J.B. (1998). nolO and noeI (HsnIII) of Rhizobium sp. NGR234 are involved in 3-O-carbamoylation and 2-O-methylation of Nod factors. The J. of Biolo. Chemi., 273(20):12047–12055
Shiferaw, B., Bantilan, M.C.S. and Serraj, R. (2004).
Harnessing the potential of BNF for Poor Farmers: Technological Policy and institutional constraints and research need. Symbiotic Nitrogen Fixation; prospects for enhanced application in tropical agriculture. (ed.): R. Serraj. Oxford and IBH publishing Co. Pvt. Ltd. New Delhi. pp.3.
Steven, G. and William, J.B. (1999). Rhizobium sp. Strain NGR234 and R. fredii USDA257 Share exceptionally broad, nested host ranges. The Ameri. Phytopatholo. Socie., 12(4): 293–318
Truchet, G., Roche, P., Lerouge, P., Vasse, J., Camut S., de Billy, F., Prome, J.C. and Denarie, J. (1991). Sulfated lipo-oligosacchride signal of Rhizobium meliloti root nodule organogenesis in alfalfa. Nature, 351: 670-673
Vashishat, R.K., Yadav, A.S. and Chaudhary, K. (1985b). Production of hydrolytic enzymes in non-nodulating strains of Rhizobium trifolii. Haryana Agric. Univ. J. Res., 15:403-405
Vincent, J.M. (1970). A manual for the practical study of the root nodule bacteria. Blackwell Scientific Publications, Oxford. pp.7-9
Vlassak, K.M. and Vanderleyden, J. (1997). Factors influencing nodule occupancy by inoculant rhizobia. Crit. Rev. Plant Sci., 16:163-229
Yoshitake, O.,Yoshinobu, N., Takuji, O., Hidetoshi, O., Nobutoshi, I., Isao, Y., Naoki, M., Min, W. and Takuji, O. (2010). Enhancement of the nitrogen fixation efficiency of genetically-engineered Rhizobium with high catalase activity. J. of Biosci. and Bioengin., 110(4):397–402
Young, J.P.W. and Johnston, A.W.B. (1989). The evolution of specificity in the legume-Rhizobium symbiosis. Trends Ecol. Evol., 4:331–349
Young, J.P., Crossman, L., Johnston, A., Thomson, N., Ghazoui, Z. and Hull, K. (2006). The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol., 7: R34.
Zhao, M., Faith, T., Ann, H., Ramakrishna, R.N. and Steven, W.R. (2005). Improvements of the MODIS terrestrial gross and net primary production global data set. Rem. Sens. of Envir., 95:164–176
This work is licensed under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) © Author (s)