Article Main

Pramod Kumar Pandey Siddhartha Singh Amit Kumar Singh Ramkrishna Samanta Raj Narain Singh Yadav M. Chandrakumar Singh

Abstract

Bacterial endophytes are the microbes internally associated with the plant, nourished in an isolated environment which is free from the external harsh and changeable ecological condition. They entered into the plant tissues and alleviate the biotic and abiotic stresses by producing numerous secondary metabolites. They are engaged with the de novo synthesis of structural compounds and stimulation of plant immunity. They are also involved in the process of exclusion of the pathogen by niche competition and actively take part in phenylpropanoid metabolism. Abiotic stresses in particular salinity problem, low pH, heavy metal toxicity and accumulation of recalcitrant complex compounds in the soil affecting the plant health are a major threat to the agriculture sector in crop production and stability of ecosystems. To cope with these problems agriculture productivity has been intensified by using synthetic chemicals and pesticides causes numerous problems worldwide. Endophytic bacteria are thus being utilized as a substitute to reduce the use of toxic chemicals and pesticides. They may be employed as a biological agent in the plant growth promotion and for the management of the global environment. There is a tremendous scope for the isolation and identification of new endophytic bacteria with excellent potential.

Article Details

Article Details

Keywords

Abiotic stress, Bioremediation, Endophyte, Endophytic bacteria, Salt stress

References
Andrews, J.H. (1992). Biological control in the phyllosphere. Annu. Rev. Phytopathol., 30: 603–635
Anu Ranjan, S. (2012). Microbial endophytes of crop plants and their role in plant growth promotion. Ph. D., Thesis, University of Agricultural Sciences, Bangalore, India.
Bacilio-JimeÂnez, M., Aguilar-Flores, S., del Valle, M.V., PeÂrez, A., Zepeda, A. and Zenteno, E. (2001). Endo-phytic bacteria in rice seeds inhibit early colonization of roots by Azospirillum brasilense. Soil Biol. Biochem., 33: 167 – 172
Barac, T., Taghavi, S., Borremans, B., Provoost, A., Oeyen, L., Colpaert, J.V., Vangronsveld, J. and van der Lelie, D. (2004). Engineered endophytic bacteria improve phyto-remediation of water soluble, volatile, organic pollutants. Nat. Biotechnol. 22: 583–588
Bull, A.T. (Ed). (2004). Microbial diversity and bioprospect-ing. ASM press.
de Melo, F.M.P., Fiore, M.F., de Moraes, L.A.B., Silva-Stenico, M.E., Scramin, S., de Araújo Teixeira, M. and de Melo, I.S. (2009). Antifungal compound produced by the cassava endophyte Bacillus pumilus MAIIIM4A. Sci. Agric. (Piracicaba, Braz.). 66(5): 583-592
Dodd, I.C., Zinovkina, N.Y., Safronova, V.I. and Belimov, A.A. (2010). Rhizobacterial mediation of plant hormone status. Ann. Appl. Biol. 157: 361-379
Dugardeyn, J. and van der Straeten, D. (2008). Ethylene: fine-tuning plant growth and development by stimulation and inhibition of elongation. Plant Sci. 175: 59-70
Elvira-Recuenco, M. and Vuurde, J.W.L.V. (2000). Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can. J. Microbiol. 46: 1036–1041
Foy, C.D. (1988). Plant adaptation to acid aluminium toxic soils. Commun. Soil Sci. Plant Anal. 19: 959–987
Freeman, E.M. (1904). The seed fungus of Lolium temulen-tum L. Phil. Trans. R. Soc. Lond. (Biol). 196: 1-27
Freire, M.B.G.S. and Freire, F.J. (2007). Fertilidade do solo e seu manejo em solos afetados por sais. In: Fertilidade do Solo. Novais, R.F.; Alvarez V., V.H.; Barros, N.F.; Fontes, R.L. F.; Cantarutti, R.B.; Neves, J.C.L. (ed.). Viçosa: So-ciedade Brasileira de Ciência do Solo, p.929-954
Germaine, K., Liu, X., Cabellos, G., Hogan, J., Ryan, D. and Dowling, D.N. (2006). Bacterial endophyte-enhanced phyto-remediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol. Ecol. 57: 302–310
Germaine, K., Keogh, E., Garcia-Cabellos, G., Borremans, B., Lelie, D., Barac, T., Oeyen, L., Vangronsveld, J., Moore, F.P., Moore, E.R., Campbell, C.D., Ryan, D. and Dowling, D.N. (2004). Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Micro-biol. Ecol. 48: 109–118
Glick, B.R. (2005). Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett. 251: 1-7
Grover, M., Ali, S.Z., Sandhya, V., Rasul, A. and Venkates-warlu, B. (2010). Role of microorganisms in adaptation of agriculture crops to abiotic stress. World J. Micro-biol. Biotechnol., 27(5): 1231-1240
Hallman, J., Quadt-Hallman, A., Mahafee, W.F. and Kloep-per, J.W. (1997). Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43: 895–914
Hawksworth, D.L., Kirk, P.M., Sutton, B.C. and Pegler, D.N. (1995). Ainsworth & Bisby’s dictionary of the fungi, 8th ed. International Mycological Institute, CAB Inter-national, Egham.
James, E.K. and Olivares, F.L. (1998). Infection and coloniza-tion of sugarcane and other graminaceous plants by endo-phytic diazotrophs. Crit. Rev. Plant Sci., 17: 77–119
Jha, Y., Subramanian, R.B. and Patel, S. (2011). Combina-tion of endophytic and rhizospheric plant growth pro-moting rhizobacteria in Oryza sativa shows higher ac-cumulation of osmoprotectant against saline stress. Acta Physiol. Plant, 33: 797–802
Ji, S.H., Gururani, M.A. and Chun, S.-C. (2014). Isolation and characterization of plant growth promoting endo-phytic diazotrophic bacteria from Korean rice cultivars. Microbiological research. 169: 83-98
Kelemu, S., Fory, P., Zuleta, C., Ricaurte, J., Rao, I. and Lascano, C. (2011). Detecting bacterial endophytes in tropical grasses of the Brachiaria genus and determin-ing their role in improving plant growth. Afr. J. Biotech. 10(6): 965–976
Kinraide, T.B. (1991). Identity of the rhizotoxic aluminium species. Plant Soil. 134: 167–178
Lambrecht, M., Okon, Y., VandeBroek, A. and Vanderley-den, J. (2000). Indole-3-acetic acid: a reciprocal signal-ling molecule in bacteria-plant interactions. Trends Microbiol. 8: 298-300
Leigh, M.B., Fletcher, J.S., Fu, X. and Schmitz, F.J. (2002). Root turnover: an important source of microbial sub-strates in rhizosphere remediation of recalcitrant con-taminants. Environ. Sci. Technol. 36: 1579–1583
Leite, M.C.B.S., de Farias, A.R.B., Freire, F.J., Andreote, F.D., Kuklinsky-Sobral, J. and Freire, M.B.G.S. (2014). Isolation, bioprospecting and diversity of salt-tolerant bacteria associated with sugarcane in soils of Pernam-buco, Brazil. R. Bras. Eng. Agríc. Ambiental. 18 (Suplemento): S73–S79
Liu, B., Huang, L., Buchenauer, H. and Kang, Z. (2010). Isolation and partial characterization of an antifungal protein from the endophytic Bacillus subtilis strain EDR4. Pest. Bioch. Physiol. 98: 305–311
Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E.R.B., Taghavi, S., Mezgeay, M. and Van der Lelie, D. (2002). Endophytic bacteria and their potential applica-tions. Crit. Rev. Plant Sci. 21: 583–606
Metternicht, G.I. and Zinck, J.A. (2003). Remote sensing of soil salinity: potentials and constraints. Remote Sens. Environ. 85: 1–20
Misra, A.K. and Dave, N. (2013). Impact of soil salinity and erosion and its overall impact on India. International Journal of Innovative Research in Engineering & Sci-ence. 2(3): 12-17
Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651–681
Newman, L. and Reynolds, C. (2005). Bacteria and phyto-remediation: new uses for endophytic bacteria in plants. Trends Biotechnol. 23: 6–8
Pandey, P.K., Samanta, R., and Yadav, R.N.S. (2015). Plant Beneficial Endophytic Bacteria from the Ethnomedici-nal Mussaenda roxburghii (Akshap) of Eastern Himala-yan Province, India. Advances in Biology. 580510, 8
Pandey, P.K., Samanta, R., and Yadav, R.N.S. (2016). Func-tional attributes of Solanum Kurzii associated bacterial endophytes for plant growth promotion. Asian Jr. of Microbiol. Biotech. Env. Sc. 18(2): 145-158
Pandey, P.K., Singh, A.K., Singh, S. and Singh, M.C.K. (2013). Recent Advances in Microbiology, Vol- 1, (Eds: Tiwari, S.P., Sharma, R. and Singh, R.K.), Nova Sci-ence Publishers, Inc, New York, USA.
Pandey, P.K., Yadav, S.K., Singh, A., Sarma, B.K., Mishra, A. and Singh, H.B. (2012). Cross-Species Alleviation of Bi-otic and Abiotic Stresses by the Endophyte Pseudomonas aeruginosa PW09. J. Phytopathology. 160: 532-539
Patel, B.B., Patel, B.B. and Dave, R.S. (2011). Studies on infiltration of saline–alkali soils of several parts of Mehsana and Patan districts of north Gujarat. J Appl Technol Environ. Sanitation. 1 (1): 87– 92
Pathak, K.V. (2011). Purification and characterization of antifungal compounds produced by banyan endophytic Bacilli. PhD Thesis, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India.
Patten, C.L. and Glick, B.R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42: 207-220
Phillips, L.A., Germida, J.J., Farrell, R.E. and Greer, C.W. (2008). Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants. Soil Biol. Biochem., 40: 3054–3064
Porteous-Moore, F., Barac, T., Borremans, B., Oeyen., L., Vangronsveld, J., van der Lelie, D., Campbell, D. and Moore, E.R.B. (2006). Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Sys. App. Micro. 29: 539–556
Ratul, N., Sharma, G.D. and Barooah, M. (2013). Screening of endophytic bacterial isolates of tea (Camellia sinen-sis L.) roots for their multiple plant growth promoting activities. IJAEB. 6(2): 211-215
Reinhold-Hurek, B. and Hurek, T. (1998). Life in grasses: diazotrophic endophytes. Trend. Microbiol. 6: 139–144
Rogers, A., Mcdonald, K., Muehlbauer, M.F., Hoffman, A., Koenig, K., Newman, L., Taghavi, S. and Van der Lelie, D. (2012). Inoculation of hybrid poplar with the endophytic bacterium Enterobacter sp. 638 increases biomass but does not impact leaf level physiology. GCB Bioenergy. 4: 364–370
Ryan, R.P., Germaine, K., Franks, A., Ryan, D.J. and Dowling, D.N. (2008). Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278: 1–9
Sairam, R.K. and Tyagi, A. (2004). Physiology and molecu-lar biology of salinity stress tolerance in plants. Curr. Sci. 86: 407–420
Shrivastava, P. and Kumar, R. (2015). Soil salinity: A seri-ous environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences. 22: 123–131
Siciliano, S.D., Fortin, N., Mihoc, A., Wisse, G., Labelle, S., Beaumier, D., Ouellette, D., Roy, R., Whyte, L.G., Banks, M.K., Schwab, P., Lee, K., and Greer, C.W. (2001). Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl. Environ. Microbiol., 67: 2469–2475
Singh, D., Singh, N.P., Chauhan, S.K. and Singh, P. (2011). Developing aluminium-tolerant crop plants using biotech-nological tools. Current Science. 100(12): 1807- 1814.
Smyth, E. (2011). Selection and analysis of bacteria on the basis of their ability to promote plant development and growth. PhD Thesis, University College Dublin.
Strobel, G., Daisy, B., Castillo, U. and Harper, J. (2004). Natural products from endophytic microorganisms. J. Nat. Prod., 67: 257–268
Sturz, A.V., Christie, B.R. and Nowak, J. (2000). Bacterial endophytes: potential role in developing sustainable sys-tems of crop production. Crit. Rev. Plant Sci. 19: 1–30
Sun, L.N., Zhang, Y.F., He, L.Y., Chen, Z.J., Wang, Q.Y., Qian, M. and Sheng, X.F. (2010). Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper tolerant plant species on cop-per mine wasteland. Bioresour. Technol., 101: 501–509
Suto, M., Takebayashi, M., Saito, K., Tanaka, M., Yokota, A. and Tomita, F. (2002). Endophytes as producers of xylanase. Journal of bioscience and bioengineering, 93(1): 88-90
Van Aken, B., Peres, C.M., Doty, S.L., Yoon, J.M. and Schnoor, J.L. (2004a). Methylobacterium populum sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides x nigra DN34). Int. J. Syst. Evol. Microbiol., 54: 1191–1196
Van Aken, B., Yoon, J.M. and Schnoor, J.L. (2004b). Bio-degradation of nitro-substituted explosives 2,4,6-Trinitrotoluene, Hexahydro-1,3,5-Trinitro-1,3,5- Triaz-ine, and Octahydro-1,3,5,7-Tetranitro-1,3,5-Tetrazocine by a phytosymbiotic Methylobacterium sp. associated with Poplar Tissues (Populus deltoids x nigra DN34). Appl. Environ. Microbiol., 70: 508–517
van der Lelie, D., Barac, T., Taghavi, S. and Vangronsveld, J. (2005). Response to Newman: New uses of endo-phytic bacteria to improve phytoremediation. TRENDS in Biotechnology, 23: 1.
Verma, S.C., Ladha, J.K. and Tripathi, A.K. (2001). Evalua-tion of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J. Bio-technol. 91: 127–141
Vogl, A.E. (1898). Mehl und die anderen mehlprodukte der cerealien und leguminosen. Nahrungsm Unters Hyg Warenk 12: 25-29
Wang, H., Wen, K., Zhao, X., Wang, X., Li, A. and Hong, H. (2009). The inhibitory activity of endophytic Bacillus sp. strain CHM1 against plant Pathogenic fungi and its plant growth-promoting effect. Crop Prot. 28: 634 – 639
White, J.C., Wang, X., Gent, M.P., Iannucci-Berger, W., Eitzer, B.D., Schultes, N.P., et al., (2003). Subspecies-level variation in the phytoextraction of weathered p,p’-DDE by Cucurbita pepo. Environ. Sci. Technol. 37: 4368–4373
Yensen, N.P. (2008). Halophyte uses for the twenty-first century. In: Khan, M.A. and Weber, D.J. (Eds.), Eco-physiology of High Salinity Tolerant Plants. Springer, Dordrecht, 367–396
Zhu, J.K. (2000). Over expression of a delta-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. Trends Plant Sci. 6: 66–72
Zinniel, D.K., Lambrecht, P., Harris, N.B., Feng, Z., Kuczmarski, D., Higley, P., Ishimaru, C.A., Arunaku-mari, A., Barletta, R.G. and Vidaver, A.K. (2002). Iso-lation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Env. Microbiol., 68: 2198–2208
Section
Research Articles

How to Cite

Inside the plant: Bacterial endophytes and abiotic stress alleviation. (2016). Journal of Applied and Natural Science, 8(4), 1899-1904. https://doi.org/10.31018/jans.v8i4.1059